• 제목/요약/키워드: Supervised prediction

검색결과 129건 처리시간 0.019초

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • 제7권1호
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

Semi-supervised Software Defect Prediction Model Based on Tri-training

  • Meng, Fanqi;Cheng, Wenying;Wang, Jingdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4028-4042
    • /
    • 2021
  • Aiming at the problem of software defect prediction difficulty caused by insufficient software defect marker samples and unbalanced classification, a semi-supervised software defect prediction model based on a tri-training algorithm was proposed by combining feature normalization, over-sampling technology, and a Tri-training algorithm. First, the feature normalization method is used to smooth the feature data to eliminate the influence of too large or too small feature values on the model's classification performance. Secondly, the oversampling method is used to expand and sample the data, which solves the unbalanced classification of labelled samples. Finally, the Tri-training algorithm performs machine learning on the training samples and establishes a defect prediction model. The novelty of this model is that it can effectively combine feature normalization, oversampling techniques, and the Tri-training algorithm to solve both the under-labelled sample and class imbalance problems. Simulation experiments using the NASA software defect prediction dataset show that the proposed method outperforms four existing supervised and semi-supervised learning in terms of Precision, Recall, and F-Measure values.

세미감독형 학습 기법을 사용한 소프트웨어 결함 예측 (Software Fault Prediction using Semi-supervised Learning Methods)

  • 홍의석
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.127-133
    • /
    • 2019
  • 소프트웨어 결함 예측 연구들의 대부분은 라벨 데이터를 훈련 데이터로 사용하는 감독형 모델에 관한 연구들이다. 감독형 모델은 높은 예측 성능을 지니지만 대부분 개발 집단들은 충분한 라벨 데이터를 보유하고 있지 않다. 언라벨 데이터만 훈련에 사용하는 비감독형 모델은 모델 구축이 어렵고 성능이 떨어진다. 훈련 데이터로 라벨 데이터와 언라벨 데이터를 모두 사용하는 세미 감독형 모델은 이들의 문제점을 해결한다. Self-training은 세미 감독형 기법들 중 여러 가정과 제약조건들이 가장 적은 기법이다. 본 논문은 Self-training 알고리즘들을 이용해 여러 모델들을 구현하였으며, Accuracy와 AUC를 이용하여 그들을 평가한 결과 YATSI 모델이 가장 좋은 성능을 보였다.

혼합 데이터 마이닝 기법인 불일치 패턴 모델의 특성 연구 (Characteristics on Inconsistency Pattern Modeling as Hybrid Data Mining Techniques)

  • 허준;김종우
    • Journal of Information Technology Applications and Management
    • /
    • 제15권1호
    • /
    • pp.225-242
    • /
    • 2008
  • PM (Inconsistency Pattern Modeling) is a hybrid supervised learning technique using the inconsistence pattern of input variables in mining data sets. The IPM tries to improve prediction accuracy by combining more than two different supervised learning methods. The previous related studies have shown that the IPM was superior to the single usage of an existing supervised learning methods such as neural networks, decision tree induction, logistic regression and so on, and it was also superior to the existing combined model methods such as Bagging, Boosting, and Stacking. The objectives of this paper is explore the characteristics of the IPM. To understand characteristics of the IPM, three experiments were performed. In these experiments, there are high performance improvements when the prediction inconsistency ratio between two different supervised learning techniques is high and the distance among supervised learning methods on MDS (Multi-Dimensional Scaling) map is long.

  • PDF

Simple Graphs for Complex Prediction Functions

  • Huh, Myung-Hoe;Lee, Yong-Goo
    • Communications for Statistical Applications and Methods
    • /
    • 제15권3호
    • /
    • pp.343-351
    • /
    • 2008
  • By supervised learning with p predictors, we frequently obtain a prediction function of the form $y\;=\;f(x_1,...,x_p)$. When $p\;{\geq}\;3$, it is not easy to understand the inner structure of f, except for the case the function is formulated as additive. In this study, we propose to use p simple graphs for visual understanding of complex prediction functions produced by several supervised learning engines such as LOESS, neural networks, support vector machines and random forests.

A supervised-learning-based spatial performance prediction framework for heterogeneous communication networks

  • Mukherjee, Shubhabrata;Choi, Taesang;Islam, Md Tajul;Choi, Baek-Young;Beard, Cory;Won, Seuck Ho;Song, Sejun
    • ETRI Journal
    • /
    • 제42권5호
    • /
    • pp.686-699
    • /
    • 2020
  • In this paper, we propose a supervised-learning-based spatial performance prediction (SLPP) framework for next-generation heterogeneous communication networks (HCNs). Adaptive asset placement, dynamic resource allocation, and load balancing are critical network functions in an HCN to ensure seamless network management and enhance service quality. Although many existing systems use measurement data to react to network performance changes, it is highly beneficial to perform accurate performance prediction for different systems to support various network functions. Recent advancements in complex statistical algorithms and computational efficiency have made machine-learning ubiquitous for accurate data-based prediction. A robust network performance prediction framework for optimizing performance and resource utilization through a linear discriminant analysis-based prediction approach has been proposed in this paper. Comparison results with different machine-learning techniques on real-world data demonstrate that SLPP provides superior accuracy and computational efficiency for both stationary and mobile user conditions.

미분류 데이터의 초기예측을 통한 군집기반의 부분지도 학습방법 (A Clustering-based Semi-Supervised Learning through Initial Prediction of Unlabeled Data)

  • 김응구;전치혁
    • 한국경영과학회지
    • /
    • 제33권3호
    • /
    • pp.93-105
    • /
    • 2008
  • Semi-supervised learning uses a small amount of labeled data to predict labels of unlabeled data as well as to improve clustering performance, whereas unsupervised learning analyzes only unlabeled data for clustering purpose. We propose a new clustering-based semi-supervised learning method by reflecting the initial predicted labels of unlabeled data on the objective function. The initial prediction should be done in terms of a discrete probability distribution through a classification method using labeled data. As a result, clusters are formed and labels of unlabeled data are predicted according to the Information of labeled data in the same cluster. We evaluate and compare the performance of the proposed method in terms of classification errors through numerical experiments with blinded labeled data.

트리 기법을 사용하는 세미감독형 결함 예측 모델 (Semi-supervised Model for Fault Prediction using Tree Methods)

  • 홍의석
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.107-113
    • /
    • 2020
  • 매우 많은 소프트웨어 결함 예측에 관한 연구들이 수행되어왔지만 대부분은 라벨 데이터를 훈련 데이터로 사용하는 감독형 모델들이었다. 언라벨 데이터만을 사용하는 비감독형 모델이나 언라벨 데이터와 매우 적은 라벨 데이터 정보를 함께 사용하는 세미감독형 모델에 관한 연구는 극소수에 불과하다. 본 논문은 Self-training 기법에 트리 알고리즘들을 사용하여 새로운 세미감독형 모델들을 제작하였다. 세미감독형 기법인 Self-training 모델에 트리 기법들을 사용하는 새로운 세미감독형 모델들을 제작하였다. 모델 평가 실험 결과 새롭게 제작한 트리 모델들이 기존 모델들보다 더 나은 성능을 보였으며, 특히 CollectiveWoods는 타 모델들에 비해 압도적으로 우월한 성능을 보였다. 또한 매우 적은 라벨 데이터 보유 상황에서도 매우 안정적인 성능을 보였다.

Supervised-learning-based algorithm for color image compression

  • Liu, Xue-Dong;Wang, Meng-Yue;Sa, Ji-Ming
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.258-271
    • /
    • 2020
  • A correlation exists between luminance samples and chrominance samples of a color image. It is beneficial to exploit such interchannel redundancy for color image compression. We propose an algorithm that predicts chrominance components Cb and Cr from the luminance component Y. The prediction model is trained by supervised learning with Laplacian-regularized least squares to minimize the total prediction error. Kernel principal component analysis mapping, which reduces computational complexity, is implemented on the same point set at both the encoder and decoder to ensure that predictions are identical at both the ends without signaling extra location information. In addition, chrominance subsampling and entropy coding for model parameters are adopted to further reduce the bit rate. Finally, luminance information and model parameters are stored for image reconstruction. Experimental results show the performance superiority of the proposed algorithm over its predecessor and JPEG, and even over JPEG-XR. The compensation version with the chrominance difference of the proposed algorithm performs close to and even better than JPEG2000 in some cases.

기계학습기법에 기반한 국제 유가 예측 모델 (Oil Price Forecasting Based on Machine Learning Techniques)

  • 박강희;;신현정
    • 대한산업공학회지
    • /
    • 제37권1호
    • /
    • pp.64-73
    • /
    • 2011
  • Oil price prediction is an important issue for the regulators of the government and the related industries. When employing the time series techniques for prediction, however, it becomes difficult and challenging since the behavior of the series of oil prices is dominated by quantitatively unexplained irregular external factors, e.g., supply- or demand-side shocks, political conflicts specific to events in the Middle East, and direct or indirect influences from other global economical indices, etc. Identifying and quantifying the relationship between oil price and those external factors may provide more relevant prediction than attempting to unclose the underlying structure of the series itself. Technically, this implies the prediction is to be based on the vectoral data on the degrees of the relationship rather than the series data. This paper proposes a novel method for time series prediction of using Semi-Supervised Learning that was originally designed only for the vector types of data. First, several time series of oil prices and other economical indices are transformed into the multiple dimensional vectors by the various types of technical indicators and the diverse combination of the indicator-specific hyper-parameters. Then, to avoid the curse of dimensionality and redundancy among the dimensions, the wellknown feature extraction techniques, PCA and NLPCA, are employed. With the extracted features, a timepointspecific similarity matrix of oil prices and other economical indices is built and finally, Semi-Supervised Learning generates one-timepoint-ahead prediction. The series of crude oil prices of West Texas Intermediate (WTI) was used to verify the proposed method, and the experiments showed promising results : 0.86 of the average AUC.