• Title/Summary/Keyword: Supersonic Combustor

Search Result 99, Processing Time 0.027 seconds

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Experimental Study of Combustion Characteristic for Dual Mode Ramjet Combustor (이중모드 램제트 연소기 연소특성 실험적 연구)

  • Shim, ChangYeul;Namkoung, HyuckJoon;Kim, SunYong;Lee, MinSoo;Park, JooHyon;Kim, DongHwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.325-329
    • /
    • 2017
  • In this study, the combustion experiment of hydrocarbon-kerosene fueled dual mode ramjet combustor was performed at mach number 3.5~6.0 conditions. Through the experiment, the temperature and the pressure distribution inside the combustion chamber were measured and the combustion characteristics inside the combustion chamber were investigated. In the mach number 3.5~5.0 range, it was able to identify subsonic combustion in the downstream combustion chamber. In the mach number 6.0 condition, the injected fuel from the injectors was naturally fired, and it was possible to confirm that supersonic combustion was successful in the upper chamber.

  • PDF

Analysis of Dual Combustion Ramjet Using Quasi 1D Model (준 1차원 모델을 적용한 이중연소 램제트 해석)

  • Choi, Jong Ho;Park, Ik Soo;Gil, Hyun Young;Hwang, Ki Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.81-88
    • /
    • 2013
  • The component based propulsion modeling and simulation of an dual ramjet engine using Taylor-Maccoll flow equation and quasi 1-D combustor model. The subsonic and supersonic intake were modeled with Taylor-Maccoll flow having $25^{\circ}$ cone angle, the gas generator which transfers a pre-combustion gas into supersonic combustor was developed using Lumped model, and the determination of the size of nozzle throat of a gas generator was described. A quasi 1-D model was applied to model a supersonic combustor and the variation of temperature and pressure inside combustor were presented. Furthermore, the thrust and specific impulse applying fuel regulation by pressure recovery ratio and equivalence ratio were derived.

Numerical Analysis of Dynamic Combustion in HyShot Scramjet Combustor with a Transverse Fuel Injection (수직 연료 분사기구를 포함하는 HyShot 스크램제트 연소기의 동적 연소 유동해석)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet combustor, where gaseous hydrogen is transversely injected into a supersonic cross flow. The corresponding altitude, angle of attack, and equivalence ratio are 35-23 km, $0^{\circ}$, and 0.426 respectively. Two-dimensional simulation reasonably predicts combustor inner pressure distribution and reveals periodic combustion characteristics of HyShot scramjet combustor. Altitude effects are also investigated and the strength of flow instability and subsonic boundary layer thickness affect the combustion efficiency according to altitudes. Frequency analyses provide the flow instability effects on the turbulent combustion in HyShot scramjet combustor.

  • PDF

Numerical Analysis of Dynamic Combustion in HyShot Scramjet Combustor with a Transverse Fuel Injection (수직 연료 분사기구를 포함하는 HyShot 스크램제트 연소기의 동적 연소 유동해석)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.79-85
    • /
    • 2007
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet combustor, where gaseous hydrogen is transversely injected into a supersonic cross flow. The corresponding altitude, angle of attack, and equivalence ratio are 35-23 km, $0^{\circ}$, and 0.426 respectively. Two-dimensional simulation reasonably predicts combustor inner pressure distribution and reveals periodic combustion characteristics of HyShot scramjet combustor. Altitude effects are also investigated and the strength of flow instability and subsonic boundary layer thickness affect the combustion efficiency according to altitudes. Frequency analyses provide the flow instability effects on the turbulent combustion in HyShot scramjet combustor.

  • PDF

Scramjet Engine Combustor Test with Vitiation Heater Type Supersonic Wind Tunnel (Vitiation heater 형 초음속풍동을 이용한 스크램제트 엔진 연소기의 연소시험)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.586-589
    • /
    • 2009
  • Scramjet engine combustor was tested with "RAMSYS" blow down wind tunnel in Kakuda Space Center, JAXA. As a result, installation of a cavity showed larger combustion pressure than the case without a cavity. Zigzag cavity applied for the first time in this experiment, showed the largest combustion pressure and is expected to contribute to the stable and economic operation of scramjet.

  • PDF

An Experimental Study on Thrust measurement Method of Supersonic Wind Tunnel from Pressure Measurement (압력 측정을 이용한 초음속 풍동의 추력 측정 방법에 대한 실험적 연구)

  • huh Hwanil;Kim Hyungmin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.253-254
    • /
    • 2002
  • The determination of thrust is very important in hypersonic air-breathing propulsion design and evaluation. Because of the short flow-residence time in the combustor, the evaluation of engine performance is strongly influenced upon the engine thrust. Conventional methods to determine the thrust is using thrust stand or force measurement system. However, these methods cannot be applied to the case where thrust stands are impractical, such as free jet testing of engines, and model combustor. With this reason, the thrust determination method from measured pilot pressure is considered and evaluated.

  • PDF

Numerical Study of Flame Stability of Turbulent Combustion in a Dual Combustion Ramjet (이중연소 램제트 엔진의 난류 연소 현상과 화염 안정성)

  • Choi, Jeong-Yeol;Han, Sang-Hoon;Kim, Kyu-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.371-374
    • /
    • 2011
  • High-resolution numerical study is carried out to investigate the flame stability of the turbulent supersonic combustion in a Dual-Combustion Ramjet (DCR). The auto-ignition in a shear layer between hydrogen/carbon-monoxide syngas and air was studied at elevated enthalpy condition. Comparison of a constant area combustor and a combustor with a small divergence angle shows that the supersonic combustion has a characteristics of the lifted flame and its stability is influenced significantly by the compressibility.

  • PDF

An Experimental Study of Shock Wave Effects on the Model Scramjet Combustor (모델 스크램제트 연소기에서 충격파 영향에 대한 실험적 연구)

  • 허환일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • An experimental study was carried out in order to investigate the effect of shock waves on the supersonic hydrogen-air jet flames stabilized in the Mach 2.5 model scramjet combustor. This experiment was the first reacting flow experiment interacting with shock waves. Two identical $10^{\cire}$ wedges were mounted on the diverging sidewalls of the combustor in order to produce oblique shock waves that interacted with the flame. Schlieren visualization pictures, wall static pressures, and combustion efficiency at two different air stagnation temperatures were measured and compared to corresponding flames without shock wave-flame interaction. It was observed that shock waves significantly altered the shape of supersonic jet flames, but had different effects on combustion efficiency depending on air temperatures. At the higher air stagnation temperature and higher fuel flow rates, combustion of efficiency showed a better result.

  • PDF