DOI QR코드

DOI QR Code

Analysis of Dual Combustion Ramjet Using Quasi 1D Model

준 1차원 모델을 적용한 이중연소 램제트 해석

  • Choi, Jong Ho (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Park, Ik Soo (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Gil, Hyun Young (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Hwang, Ki Young (Advanced Propulsion Technology Center, Agency for Defense Development)
  • Received : 2012.12.03
  • Accepted : 2013.10.25
  • Published : 2013.12.01

Abstract

The component based propulsion modeling and simulation of an dual ramjet engine using Taylor-Maccoll flow equation and quasi 1-D combustor model. The subsonic and supersonic intake were modeled with Taylor-Maccoll flow having $25^{\circ}$ cone angle, the gas generator which transfers a pre-combustion gas into supersonic combustor was developed using Lumped model, and the determination of the size of nozzle throat of a gas generator was described. A quasi 1-D model was applied to model a supersonic combustor and the variation of temperature and pressure inside combustor were presented. Furthermore, the thrust and specific impulse applying fuel regulation by pressure recovery ratio and equivalence ratio were derived.

Taylor-Maccoll 유동관계식과 준 1차원 모델을 적용한 구성품 기반의 이중램제트 추진기관 모델 개발에 대해 기술하였다. 이중램제트 흡입구는 Taylor Maccoll 유동관계식을 적용하여 콘 각도 $25^{\circ}$ 형상을 갖는 흡입구에 대해 아음속 및 초음속 흡입구 모델을 구현하였으며 예 연소가스를 초음속 연소기로 전달하는 기능의 가스발생기는 Lumped 모델을 적용하여 모델을 구현하였고 요구되는 노즐목 크기에 대해 기술하였다. 초음속 연소기의 경우 준 1차원 모델을 적용하여 위치에 따른 마하수 변화, 온도변화 및 압력변화 등을 제시하였다. 또한 금번 모델을 이용하여 당량비 및 압력회복율을 고려한 연료량 조절모델에 따른 추력과 비추력을 계산하여 그 결과를 제시하였다.

Keywords

References

  1. Wikipedia, "WaveRider," World Wide Web location, http://en.wikipedia.org/Waverider
  2. Andreas Parsh, "Boing HyFly," World Wide Web location, http://www.designation-systems.net/dusrm/app4/hyfly.html
  3. Choi, J.Y., Han, S.H., Kim, K.H., "Numerical Study of Flame Stability of Turbulent Combustion in a Dual Combustion Ramjet," 2011 KSPE Spring Conference, 2011.4.28-29, pp. 371-374, 2011.
  4. Billing, F.S., Waltrup, P.J. and Stockbridge R.D., "Integral-Rocket Dual- Combustion Ramjets: A New Propulsion Concept," Journal of Spacecraft and Rockets, Vol. 17, No. 5, pp. 416-424, 1980. https://doi.org/10.2514/3.57760
  5. Choi, J.H., Park, I.S., Lee, J.Y., Kim, J.H., Kim, I.S., Yoon, H.G., Lim, J.S., Kim, C.B., Park, J.M., "Model and component based modeling and simulation of a supersonic propulsion system," 2011 KSPE Fall Conference, 2011.11.24-25. pp. 579-583, 2011.
  6. Michel A. Saad, Compressible Fluid Flow, 2nd edition, Prentice Hall, Englewood Cliffs, New Jersey 07632, pp. 281, 1993.
  7. Con J. Doolan, Russell Boyce, "A Quasi-One-Dimensional Mixing and Combustion Code for Trajectory Optimization and Design Studies," 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 28 April 1 May 2008, Dayton, Ohio, 2008.
  8. Dean K. Frederick, "A New Method for Constructing Fast Models of Jet Engines in Simulink," 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2-5 August 2009, Denver, Colorado, AIAA 2009-5419, 2009.

Cited by

  1. Dual combustor ramjet engine dynamics modeling and simulation for design analysis pp.2041-3025, 2018, https://doi.org/10.1177/0954410017749867