2009 KSPE Fall Conference

Vitiation heater 형 초음속풍동을 이용한 스크램제트 엔진 연소기의 연소시험

강상훈* • 이양지* • 양수석*

Scramjet Engine Combustor Test with Vitiation Heater Type Supersonic Wind Tunnel

Sang Hun Kang* · Yang Ji Lee* · Soo Seok Yang*

ABSTRACT

Scramjet engine combustor was tested with "RAMSYS" blow down wind tunnel in Kakuda Space Center, JAXA. As a result, installation of a cavity showed larger combustion pressure than the case without a cavity. Zigzag cavity applied for the first time in this experiment, showed the largest combustion pressure and is expected to contribute to the stable and economic operation of scramjet.

초 록

일본 JAXA가 보유하고 있는 Blow down 방식의 초음속 풍동 "RAMSYS"를 이용하여 스크램제트 엔 진 연소기의 연소시험을 수행하였다. 시험결과로 Cavity가 없는 경우보다 Cavity를 장착한 경우에 연 소압력이 높게 나타나는 것으로 확인되었으며 본 연구를 통하여 새롭게 적용한 zigzag cavity는 가장 높은 연소압력을 보여 스크램제트엔진의 안정적인 운영에 기여할 것으로 기대된다.

Key Words: Scramjet Engine(스크램제트 엔진), Supersonic Combustion(초음속 연소), Vitiation heater, 열질식(Thermal Choking), 공동보염기(Cavity Flame Holder)

1. 서 론

극초음속엔진의 지상시험은 크게 충격파 터널 과 같은 Impluse type의 시험설비를 이용하는 것과 Blow down 풍동과 같은 continuous type 의 시험설비를 이용하는 방법으로 나눌 수 있다. Impulse type의 시험설비는 공기오염도가 적고 공간적으로 매우 균일한 유동을 얻을 수 있는 장점이 있다. 그러나, 이러한 설비는 구현할 수 있는 시험시간이 매우 짧다는 단점이 있어, 연소 기의 내열성능이나 비정상현상확인은 어렵다고 할 수 있다. Continuous type의 시험설비는 Impulse type 보다 충분히 긴 시험시간을 가질 수 있으나, 유동의 균일도가 상대적으로 낮다는 단점이 있다.

한국항공우주연구원은 2007년 호주의 T4 shock tunnel을 이용하여 스크램제트 엔진의 지

^{*} 한국항공우주연구원 첨단추진기관팀

연락저자, E-mail: aeroksh@kari.re.kr

상시험을 수행하고 초음속연소특성을 확인하였 다[1-3]. 본 연구에서는 스크램제트 엔진 연소기 의 지상시험을 통해 본 연구팀이 연소기에 적용 한 기술이 연속유동에서도 정상적으로 작동하는 지 확인하고 flame holder 형상에 따른 특성을 고찰하였다.

2. 실험장치 구성

2.1 시험 설비

본 시험을 위해서는 전압력 1.2MPa, 전온도 2000K에 달하는 고온고압공기 공급원이 필요하 다. 이를 위해 본 연구팀은 일본 JAXA(Japan Aerospace Exploration Agency)의 Kakuda Space Center가 보유하고 있는 Vitiation Air Heater 형 초음속풍동 "RAMSYS"를 이용하였다 [4,5]. Fig. 1은 JAXA의 고속추진기관 시험설비 "RAMSYS"를 이용한 본 연구팀의 스크램제트 엔 진연소기의 연소시험수행모습을 보여주고 있다. 본 시험설비는 모델 직결형의 Blow down wind tunnel로서 압축공기유동에 Vitiation Air Heater 에서 발생하는 수소연소가스를 주입하여 고온 고압의 공기소스를 구현하고, 이를 팽창시켜 고 속유동을 발생시킨다. 이때, 수소연소로 인한 산 소소모 및 수분발생량을 보정해주기 위해 추가 적으로 산소공기를 고온 유동에 주입한다. 본 시 험설비의 구체적인 사양은 Table 1에 나타냈다.

Table 1. Specification of T4 Free piston shock tunnel

Description	Quantity	
Total Pressure	1 ~ 1.5 MPa	
Total Temperature	800 ~ 2000 K	
Mach No.	2.5	
Nozzle Exit Size	147.3 X 32 mm ²	
Test Duration time	4 sec	

2.2 시험 모델

Fig. 1에는 시험모델은 Connection flange, isolator, fuel injection plate, supersonic

Fig. 1. Combustion test of scramjet engine combustor with blow down supersonic wind tunnel

combustor, gas sampling flange로 구성되어 있 다. fuel injection plate는 본체와 8개의 bolt로 체결되며 안전을 위해 이를 제외한 모든 구성품 은 용접으로 결합되어 있다.

본 연소기 시험을 통하여 flame holder가 초 음속 연소에 미치는 영향을 파악하기 위해 세 가지 형태의 flame holder (No cavity, Plain cavity, zigzag cavity)를 적용하였다.

Fig. 3. Configuration of fuel injection plates

연소기 내부의 압력은 60개 지점에서 Scanning -type 압력센서 (Scanni valve, Range 0~360kPa, Error ±0.25% full scale)를 이용하여 측정하였다.

2.3 시험 조건

본 시험에서는 비행마하수 6.5의 조건에 준하 여 스크램제트 엔진 연소기 입구조건을 설정하 고 Table 2와 같은 시험조건에서 연소시험을 수행하였다.

Table 2.	Scramjet	engine	combustor	test	condition
----------	----------	--------	-----------	------	-----------

Description	Quantity
Total Pressure	1.2 MPa
Total Temperature	2000 K
Mach No.	2.5
Static Pressure	70 kPa
Static Temperature	889 K

3. 실험 결과

3.1 비반응 유동장 시험결과

Fig. 4에는 연료를 분사하지 않은 비반응 유동 장인 경우의 연소기 Bottom wall의 압력분포를 나타냈다. 그림에서 나타난 바와 같이 fuel injection point 직후에 위치하는 cavity의 영향으 로 combustor 하류 측에는 미약하나마 flame holder type 에 따른 압력의 차이가 나타나고 있 으나, 그 외의 영역에서는 거의 동일한 압력분포 를 보이고 있다. Fuel injection point 이전의 combustor isolator 구간에서 압력 섭동은 연소 기 입구부와 마하수 노즐 출구부가 크기가 높이 방향으로 약 0.3mm 오차가 있었기 때문으로 확 인되었다. IAXA 측은 본 시험을 통한 자료 공개 및 각종 학술논문에서도 마하수 노즐 높이를 147.3mm 로 표기하고 있고 본 연구팀도 이에 맞춰 연소기를 제작하였으나 실측결과 JAXA 설 비의 마하수 노즐은 147mm ~ 147.1mm 수준인 것으로 확인됐다. 단 0.3mm의 오차가 상기와 같 은 압력 섭동을 유발한다는 것은 주목할 만한 결과이지만, 실제 스크램제트 엔진 연소기에서도 흡입구 cowl 등에서 발생한 경사 충격파, 팽창파 등이 반사되어 유입되므로 실 연소기 시험결과 에는 큰 영향이 없을 것으로 판단된다.

Fig. 4. Bottom wall pressure distribution for non-reacting flow

Fig. 5. Bottom wall pressure distribution for low equivalence ratio case

3.2 반응 유동장 시험결과

Fig. 5~7에는 연료를 분사한 반응유동장인 경 우의 연소기 Bottom wall의 압력분포를 나타냈 다. 그림에서 확인할 수 있듯이 연료량에 관계없 이 본 연구팀이 개발한 zigzag cavity 형의 flame holder 측의 압력이 가장 높게 나타나 연 소가 가장 활발하게 일어났음을 알 수 있다. 다 만, 이러한 경향은 연료량이 적은 경우에 더욱 두드러지게 나타나고 있으며 많은 연료량으로 인해 Thermal choking이 일어난 경우에는 zigzag cavity와 plain cavity의 결과가 거의 비

슷한 양상을 보이고 있다.

비행체를 운용할 때에는 많은 연료를 사용하 며 강한 추진력을 얻어야할 때도 있지만, 최적의 연료량으로 순항비행을 해야하는 경우가 많다. 본 연구팀이 새롭게 적용한 zigzag cavity type 의 flame holder는 적은 연료량인 경우에도 활 발한 연소를 유발함으로써 매우 경제적이고 안 정적인 스크램제트 엔진운영에 기여할 것으로 기대된다.

Fig. 6. Bottom wall pressure distribution for Middle equivalence ratio case

Fig. 7. Bottom wall pressure distribution for High equivalence ratio case

4. 결 론

본 연구를 통하여 모델 스크램제트 엔진 연소 기의 연소시험을 수행하였으며 연속적인 초음속 유동조건에서도 본 연구팀이 스크램제트 엔진 연소기에 적용한 기술이 유효함을 확인하였다. Fuel injector 형태에 따른 연소특성에서 Cavity 가 없는 경우보다 Cavity를 설치한 경우가 더 높은 연소압력을 보였다. 특히 본 연구에서는 새 롭게 적용한 zigzag형 cavity가 높은 연소압력을 보여 안정적인 스크램제트 엔진 운영에 도움을 줄 수 있을 것으로 기대된다.

참 고 문 헌

- 이양지, 강상훈, 양수석, "호주 UQ의 T4 Free Piston Shock Tunnel에서의 스크램제트 엔진 성능시험 절차 연구," 한국항공우주공 학회 2007 추계학술발표회논문집, pp.1457-1460
- 강상훈, 이양지, 양수석, "충격파 터널시험을 통한 스크램제트 엔진의 초음속 연소현상 연 구," 한국추진공학회 춘계학술발표회 논문집, 2008, pp.307-314
- Kang S., Lee J., Yang S., Smart M. and Milinda S. "Investigation of supersonic combustion through model engine design and shock tunnel tests," ISABE 2009-1318, 2009
- S. Tomioka, K. Kobayashi, K. Kudo, A. Murakami and T. Kanda "Performance of Supersonic Combustors with Fuel Injection in Diverging Section," Journal of Propulsion and Power, Vol. 22, 2006, pp.111-119
- K. Kobayashi, S. Tomioka, K. Kato, A. Murakami and K. Kudo "Performance of a Dual-Mode Combustor with Multistaged Fuel Injection," Journal of Propulsion and Power, Vol. 22, 2006, pp.518-526