• Title/Summary/Keyword: Supersonic Combustion

Search Result 153, Processing Time 0.022 seconds

A Analysis Study of Dual-Mode Scramjet Engine Flowpath (이중모드 스크램제트 엔진 Flowpath 해석 연구)

  • Byun, Jong-Ryul;Ahn, Jungki;Ananthkrishnan, N.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.277-284
    • /
    • 2017
  • This study is the results of the analytical research for a dual-model scramjet engine flowpath which is included inlet, isolator, combustor, and nozzle. To design a dual-mode scramjet engine and to investigate its performance, the performance analysis models and tools are required to develope for aerodynamic, thermodynamic characteristics, propulsion, and total system. Therefore, analysis models for air inlet, isolator, supersonic combustor, and nozzle of a dual-mode scramjet engine were accomplished, the performance characteristics of a dual-mode scramjet engine is investigated with using the developed analysis tools.

  • PDF

Effect of Nozzle Initial and Exit Wall Angles on Supersonic Flow Field in a Thrust Optimized Nozzle (추력이 최적화된 노즐의 초음속 유동에 대한 노즐벽 초기 및 출구각도의 영향)

  • Jeon, Tae Jun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Effects of the nozzle wall angles on the supersonic flow field in a thrust optimized nozzle were numerically investigated. The combustor and operating condition of 30-tonf rocket engine was selected to study the optimum nozzle shape. The nozzle flow of combustion products was realized by the shifting equilibrium calculation for the propellant of kerosene-LOx. The change of nozzle wall angles induced different developing patterns of the internal and secondary shock wave. The optimum nozzle was obtained when the internal shock was in a specific position at the nozzle outlet. The nozzle wall angles of the optimum nozzle were very similar to those of the optimum nozzle which does not consider the shock wave.

Starting Transients in Dual-Mode Scramjet Engine (이중 모드 스트램제트 엔진의 시동 천이 과정)

  • Choi, Jeong-Yeol;Noh, Jin-Hyun;Byun, Jong-Ryul;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.981-984
    • /
    • 2011
  • A high-resolution numerical study is carried out to investigate the transient process of the combustion and the shock-train developments in an ethylene-fueled direct-connect dual-mode scramjet combustor. Following the fuel injection, air-throttling is applied at the expansion part of the combustor to provide mass addition to block the flow to subsonic speed. The ignition occurs several ms later when the fuel and air are mixed sufficiently. The pressure build up by the combustion leads to the shock train formation in the isolator section that advances to the exit of the intake nozzle. Then, the air-throttling is deactivated and the exhaust process begins and the situation before the air-throttling is restored. Present simulation shows the detailed processes in the dual-mode scramjet combustor for better understanding of the operation regimes and characteristics.

  • PDF

A Research on Control Method Design for the Intake Flow of a Dual Combustion Ramjet Engine using Multiple Control Inputs (다중의 제어입력을 이용한 이중연소 램제트 엔진의 흡입구 유동 제어기법 연구)

  • Park, Jungwoo;Park, Iksoo;Kim, Junghoe;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.49-58
    • /
    • 2018
  • This paper introduces a research on the control method design for the subsonic intake flow of a dual-combustion ramjet engine. To design the control method, the intake flow dynamic response characteristics, based on a designated flow condition and intake geometry, are investigated, and a control method concept considering the intake flow characteristics is established. Using a dynamic simulation model of a dual-combustion ramjet, control input/output linearized models are obtained such that a control loop design based on linearized models can be accomplished. Finally, from various control loop simulations, the performance of the control method, including its control loop stability, is evaluated.

Rounded Entry Orifice Characteristics for Pressurization Control (가압제어용 둥근 유입형 오리피스 특성)

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Jang, Je-Sung;Shin, Dong-Sung;Han, Sang-Yeop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.401-404
    • /
    • 2008
  • Pressurization system in a liquid-propellant launcher supplies the controlled gas into the ullage volume of propellant tanks to feed propellants to combustion chamber by pressurizing propellants stored in propellant tanks. The ullage part of propellant tank should be constantly pressurized to supply the propellants stored in propellant tanks to turbo-pump or combustion chamber by pressurant pressurization system. Pressurant used to pressurize propellants is generally stored in a series of tanks at cryogenic temperature and high preassure inside an oxidizer tank. The reason is to store the quantity of pressurant as much as possible and to make pressurant tanks as small as (i.e. as light as) possible. However for test convenience pressurant tank is located at STP (standard temperature and pressure) environment in this study. Orifices are widely adapted to several pressurization systems in liquid rocket propulsion systems. Discharge coefficients of orifices are essentially needed for the optimized design of pressurization system in liquid rocket propulsion system. For this study gaseous nitrogen was served as pressurant and rounded entry orifices were employed. The forty-two (42) rounded entry orifices (the radii of curvatures are 0.5 and 1.0) have been tested experimentally in the supersonic flow region. The discharge coefficients of rounded entry orifices with inside diameters ranging from about 1.4 to 5.0mm was measured with 0.95 ${\sim}$ 0.99.

  • PDF

Development of C/SiC Composite Parts for Rocket Propulsion (로켓 추진기관용 C/SiC 내열부품 개발)

  • Kim, Yunchul;Seo, Sangkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.68-77
    • /
    • 2019
  • C/SiC composites were developed by a liquid silicon infiltration(LSI) method for use as heat-resistant parts of solid and liquid rocket propulsion engines. The heat resistance characteristics according to the composition ratio (carbon / silicon / silicon carbide) were evaluated by specimen test through arc plasma, supersonic torch test. An ablation equation for oxidation reactions was presented. Through the combustion test it was verified that various parts such as nozzle insert, exit cone and combustion chamber heat resistant parts for rocket propulsion can be manufactured and proved high ablation performance and thermal structure performance.

An Experimental Study of a Diffuser Starting Characteristics for Simulating High-Altitude Environment by using a Liquid Rocket (액체로켓엔진 연소기를 이용한 고고도 환경 모사용 디퓨저 시동특성 연구)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1195-1201
    • /
    • 2010
  • Performance tests of a supersonic exhaust diffuser were conducted by using a liquid rocket engine for simulating high-altitude environment. The experimental setup consisted of a combustion chamber, a vacuum chamber and a diffuser. The combustion tests for simulating high-altitude environment were carried out at three cases by chamber pressure variation(26, 29, 32barg). The test results showed that the diffuser was started at all case and vacuum chamber pressures were approximately 140torr. The starting pressure using combustion gas was similar with that of cold gas, but the vacuum chamber pressure was relatively high because of high temperature in the vacuum chamber. The results of this test can be used as an essential database for the design of real-scale high-altitude simulation test facility in the future.

An Experimental Study on Internal Drag Correction of High Speed Vehicle Using Three Probes (세 가지 프로브를 이용한 초고속 비행체 내부 항력 보정 기법의 실험적 연구)

  • Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.529-537
    • /
    • 2021
  • Wind tunnel tests were carried out with a scramjet high speed vehicle. Since the scramjet engine does not have a compressor, it has a simple structure, but it is important to design the intake for the supersonic combustion in the combustion chamber. In this study, internal flow characteristics and the starting condition were analyzed by measuring the pressure at the isolator exit just before the combustion chamber, and the intake performance parameters were calculated and compared the result on every Mach number. The aerodynamic characteristics of the flow-through high speed vehicle were analyzed and internal drag correction is required to precisely analyze the aerodynamic characteristics. In this paper, an experimental technique using three probes for internal drag correction was proposed. By applying internal drag correction, it was able to figure out the effect of the internal flow on the aerodynamic force of the vehicle.

NUMERICAL STUDY OF MIXING ENHANCEMENT EFFECT DUE TO THE CONFIGURATION RATIO OF CAVITY (Cavity 형상비에 따른 혼합 중대 효과의 수치적 연구)

  • Oh Juyoung;Bae Y.W.;Kim K.S.;Byun Y.H.;Lee J.-W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.245-248
    • /
    • 2005
  • SCRamjet is the key technology for hypersonic flight over mach number 6. It is characterized by very short residence time in combustor because its internal flow is supersonic. In this short time, the whole process of combustion must be done. Especially numerical study of combustor is important because air-fuel mixing rate influences the performance of combustor. Various methods of air-fuel mixing enhancement are proposed. Among these, cavity injection method is selected to study in this paper. The numerical study is conducted with the variation of the cavity length at the fixed height of unit and jet injection on the downstream of cavity.

  • PDF

Histories and Trends on Scramjet Development of Worldwide Developed Countries (1) : USA & Russia (해외 선진국의 스크램제트 개발역사 및 동향(1) : 미국과 러시아)

  • Park Jong-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.72-78
    • /
    • 2005
  • Considerable achievements on scramjet technology have been performed since the end of 1950's when the improvement of performance on ramjet engine was begun. From the viewpoint of rapid and economic efficiency, scramjet propulsion system is presently regarded as the most promising one considered to be applied to the atmospheric hypersonic airplanes and ballistic weapons and even the space launch vehicles. Histories and current trends on scramjet development of USA and Russia are investigated and suggested in this paper.

  • PDF