• Title/Summary/Keyword: Supersonic Aircraft

Search Result 109, Processing Time 0.035 seconds

Cause of Fuel Leakage from the Inner Piston Packing of Afterburner Fuel Pump in an Aircraft J85-GE-21 Turbojet Engine (전투기 J85-GE-21 터보제트 엔진 후기 연소기 연료펌프의 내부 피스톤 패킹 연료 누출 원인)

  • Kim, Ik-Sik;Hwang, Young-Ha;Sohn, Kyung-Suk;Lee, Jung-Hun;Kim, Sung-Uk
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • Most of military supersonic aircraft use an afterburner. It plays an important role in performing unusual duties for supersonic flight, takeoff, and combat situations. Recently, repetitive fuel leakage from the inner piston packing rubber of afterburner fuel pump in an aircraft J85-GE-21 turbojet engine has happened. These failures have only happened in one manufacturer's parts of two manufacturers. Thus, the cause of these failures was investigated through the comparative analysis for both the failed and the unfailed with two different manufacturers using various analysis methods. The failure analysis was performed using analysis methods such as swelling or swelling ratio, total sulfur content, polymer identification, loading and surface area of carbon black, and hardness. Consequently, the main cause of this failure was identified to be insufficient loading of carbon black as a reinforcing agent, together with small surface area of carbon black and somewhat low sulfur content.

A Study of Supersonic Nozzle Design for Partial Admitted Turbine Used on Organic Rankine Cycle (유기랭킨사이클용 부분분사터빈의 초음속노즐 설계에 대한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.5-12
    • /
    • 2014
  • Organic Rankine Cycle is widely used to convert the low-grade thermal energy to the electrical energy. However, usually available thermal energy is not supplied constantly. This makes hard to use positive displacement expanders. Hence, turbo-expander has merits to apply as an expander in ORC because it can operate well off-design points even though the mass flowrate is fluctuated. The thermal energy fluctuation causes the turbo-expander to operate in partial admission. In addition, supersonic nozzles are required so that the partially admitted turbine operates efficiently. In this study, R245fa was chosen as a working fluid of ORC. A design method and an analysis technique of supersonic nozzle based on R245fa were developed. The shape of the nozzle was designed by the characteristic method. The thermal properties within the nozzle were estimated and the predicted results were agreed well with the computed results.

The consideration about pressure on surface of cone shape in experiments of supersonic wind tunnel I (초음속풍동실험에서 원뿔형상의 표면에서 측정되는 압력에 대한 고찰 I)

  • Lee, Jae-Ho;Choi, Jong-Ho;Yoon, Hyun-Gull;Kim, Kyu-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.391-394
    • /
    • 2011
  • In this paper, the shock angle and effect had been compared with numerical data within supersonic area at an forebody such as missiles or an aircraft. By using supersonic wind tunnel in Seoul National University, The shock position and magnitude were measured in the model of cone shape according to mach number. The experiment had been conducted at mach number 2.0, 3.0, and 3.8. As a result, the shock position and magnitude are different from flow velocity, AOA, and AOS in some cases blockage effect had occurred.

  • PDF

Development of Gravity-induced Loss of Consciousness(GLOC) Monitoring System and Automatic Recovery System (중력 가속도로 인한 의식상실 감지 및 자동 회복 시스템 개발)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Kang, Im-Ju;Jang, Soon-Ryong;Kim, Kwang-Yun;Park, Myung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.704-713
    • /
    • 2011
  • For many years, many pilots lost their lives and aircrafts due to GLOC(Gravity-induced Loss Of Consciousness). Due to the emergence of high-gravity maneuvering aircraft such as the F-16, F-15 and T-50, the automatic GLOC detection and recovery systems are necessary to increase the aircraft safeties even when the pilot loses his consciousness due to high-G maneuvering. This paper addresses the design of GLOC detection, warning and recovery algorithm based on a model of supersonic jet trainer. The system is solely controlled by the pilot's control input (i.e., control stick force) and aircraft status such as attitude, airspeed, altitude and so forth. And, moreover, it does not depend upon any pilot physiological condition. The test evaluation results show that the developed system supports the recovery of an aircraft from the unusual aircraft attitude and improves the aircraft safeties even when the pilot loses his consciousness due to high-G maneuvering.

The Performance Modeling of a Low Bypass Turbofan Engine for Supersonic Aircraft (초음속 항공기용 저바이패스 터보팬엔진 성능 모델링)

  • Choi, Won;You, Jae-Ho;Lee, Il-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.79-88
    • /
    • 2010
  • This paper dealt with the performance modeling of a low bypass turbofan engine for supersonic aircraft. The Pratt and Whitney F100-PW-229 engine has been employed for low bypass turbofan engine performance modeling. Generally, the complete commercially-classified informations concerning the engine are unknown. The components' generic characteristics and assumptions made in order to build the F100-PW-229 engine performance model using by the published data from the open literature as basic data are described. Through the comparison of engine performance model's analysis data using Gasturb11 with engine deck data showed that the engine performance model was evaluated to be properly constructed.

The Performance Modeling of a Low Bypass Turbofan Engine for Supersonic Aircraft (초음속 항공기용 저바이패스 터보팬엔진 성능 모델링)

  • Choi, Won;Jeong, In-Myon;You, Jae-Ho;Lee, Il-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.239-248
    • /
    • 2010
  • This paper dealt with the Performance Modeling of a low-bypass turbofan engine for supersonic aircraft. The Pratt and Whitney F100-PW-229 engine has been employed for low-bypass turbofan engine performance modeling. Generally, The complete commercially-classified information concerning the engine are unknown. So, Components' generic characteristics are described and assumptions made in order to model the F100-PW-229 engine performance model. All the analysis has been undertaken using published data taken from the open literature. The results of the Engine Performance using Gasturb11 showed that the Engine performance model was evaluated to be properly constructed.

  • PDF

Enlarge duct length optimization for suddenly expanded flows

  • Pathan, Khizar A.;Dabeer, Prakash S.;Khan, Sher A.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.203-214
    • /
    • 2020
  • In many applications like the aircraft or the rockets/missiles, the flow from a nozzle needs to be expanded suddenly in an enlarged duct of larger diameter. The enlarged duct is provided after the nozzle to maximize the thrust created by the flow from the nozzle. When the fluid is suddenly expanded in an enlarged duct, the base pressure is generally lower than the atmospheric pressure, which results in base drag. The objective of this research work is to optimize the length to diameter (L/D) ratio of the enlarged duct using the CFD analysis in the flow field from the supersonic nozzle. The flow from the nozzle drained in an enlarged duct, the thrust, and the base pressure are studied. The Mach numbers for the study were 1.5, 2.0 and 2.5. The nozzle pressure ratios (NPR) of the study were 2, 5 and 8. The L/D ratios of the study were 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Based on the results, it is concluded that the L/D ratio should be increased to an optimum value to reattach the flow to an enlarged duct and to increase the thrust. The supersonic suddenly expanded flow field is wave dominant, and the results cannot be generalized. The optimized L/D ratios for various combinations of flow and geometrical parameters are given in the conclusion section.

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

Unsteady Aerodynimic Analysis of an Aircraft Using a Frequency Domain 3-D Panel Method (주파수영역 3차원 패널법을 이용한 항공기의 비정상 공력해석)

  • 김창희;조진수;염찬홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1808-1817
    • /
    • 1994
  • Unsteady aerodynamic analysis of an aircraft is done using a frequency domian 3-D panel method. The method is based on an unsteady linear compressible lifting surface theory. The lifting surface is placed in a flight patch, and angle of attack and camber effects are implemented in upwash. Fuselage effects are not considered. The unsteady solutions of the code are validated by comparing with the solutions of a hybrid doublet lattice-doublet point method and a doublet point method for various wing configurations at subsonic and supersonic flow conditions. The calculated results of dynamic stability derivatives for aircraft are shown without comparision due to lack of available measured data or calculated results.

The Effect of an Installation Angle of IMFP sensors on Estimation of Altitude of T-50 Aircraft in the Transonic Region (IMFP 장착각도가 T-50 초음속 고도정보에 미치는 영향)

  • Nam, Yong-seog;Kim, Yeon-hi;Song, Seok-bong;Kim, Seong-jun
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • The flight control of the T-50 advanced trainer is conducted by the digital FBW (Flight-by-Wire) control system. The system input data consist of flight conditions such as altitude, airspeed, and angle of attack. And the flight conditions of the aircraft are obtained from IMFP (Integrated Multi-Function Probe). The T-50 aircraft equip three IMFP sensors. To ensure reliability in flight condition data obtained from each IMFP sensor, the mean value of flight conditions is used as the input of the control system. In this study, the effect of an installation angle of IMFP sensors on estimation of flight altitude was investigated by flight test results in the supersonic region.

  • PDF