• Title/Summary/Keyword: Superelastic behavior

Search Result 28, Processing Time 0.018 seconds

Simulation of superelastic SMA helical springs

  • Mehrabi, Reza;Ravari, Mohammad Reza Karamooz
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.183-194
    • /
    • 2015
  • Shape memory alloy (SMA) helical springs have found a large number of different applications in industries including biomedical devices and actuators. According to the application of SMA springs in different actuators, they are usually under tension and torsion loadings. The ability of SMAs in recovering inelastic strains is due to martensitic phase transformation between austenite and martensite phases. Stress or temperature induced martensite transformation induced of SMAs is a remarkable property which makes SMA springs more superior in comparison with traditional springs. The present paper deals with the simulation of SMA helical spring at room temperature. Three-dimensional phenomenological constitutive model is used to describe superelastic behavior of helical spring. This constitutive model is implemented as a user subroutine through ABAQUS STANDARD (UMAT), and the process of the implementation is presented. Numerical results show that the developed constitutive model provides an appropriate approach to captures the general behavior of SMA helical springs.

Unique local deformations of the superelastic SMA rods during stress-relaxation tests

  • Ashiqur Rahman, Muhammad;Rahman Khan, Mujibur
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.563-574
    • /
    • 2006
  • This paper studies mechanical behavior of the superelastic shape memory alloy (SMA) rods in terms of local deformations and time via tensile loading-unloading cycles for both ends fixed end constraints. Besides the unique stress induced martensitic transformation (SIMT), SMA's time dependent behavior when it is in mixed-phase condition upon loading and unloading, also need careful attention with a view of investigating the local deformation of the structural elements made of the same material. With this perspective, the so-called stress-relaxation tests have been performed to demonstrate and investigate the local strains-total strains relationships with time, particularly, during the forward SIMT. Some remarkable phenomena have been observed pertaining to SIMT, which are absent in traditional materials and those unique phenomena have been explained qualitatively. For example, at the stopped loading conditions the two ends (fixed end and moving end of the tensile testing machine) were in fixed positions. So that there was no axial overall deformation of the specimen but some notable increase in the axial local deformation was shown by the extensometer placed at the middle of the SMA specimen. It should be noted that this peculiar behavior termed as 'inertia driven SIMT' occurs only when the loading was stopped at mixed phase condition. Besides this relaxation test for the SMA specimens, the same is performed for the mild steel (MS) specimens under similar test conditions. The MS specimens, however, show no unusual increase of local strains during the stress relaxation tests.

Analysis of extended end plate connection equipped with SMA bolts using component method

  • Toghroli, Ali;Nasirianfar, Mohammad Sadegh;Shariati, Ali;Khorami, Majid;Paknahad, Masoud;Ahmadi, Masoud;Gharehaghaj, Behnam;Zandi, Yousef
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.213-228
    • /
    • 2020
  • Shape Memory Alloys (SMAs) are new materials used in various fields of science and engineering, one of which is civil engineering. Owing to their distinguished capabilities such as super elasticity, energy dissipation, and tolerating cyclic deformations, these materials have been of interest to engineers. On the other hand, the connections of a steel structure are of paramount importance because of their vulnerabilities during an earthquake. Therefore, it is indispensable to find approaches to augment the efficiency and safety of the connection. This research investigates the behavior of steel connections with extended end plates equipped hybridly with 8 rows of high strength bolts as well as Nitinol superelastic SMA bolts. The connections are studied using component method in dual form. In this method, the components affecting the connections behavior, such as beam flange, beam web, column web, extended end plate, and bolts are considered as parallel and series springs according to the Euro-Code3. Then, the nonlinear force- displacement response of the connection is presented in the form of moment-rotation curve. The results obtained from this survey demonstrate that the connection has ductility, in addition to its high strength, due to high ductility of SMA bolts.

Verification of Behavior Characteristics of Precompression Polyurethane Damper Using Superelastic Shape Memory Alloy (초탄성 형상기억합금을 적용한 선행압축 폴리우레탄 댐퍼의 거동 특성 검증)

  • Kim, Young-Chan;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.413-420
    • /
    • 2023
  • Among the seismic structures for reducing earthquake damage, the seismic control structure is a technology that can efficiently improve seismic performance and secure economic feasibility by simply applying a damper. However, existing dampers have limitations in terms of durability due to required seismic performance and material plasticity. In this study, we proposed a polyurethane damper with enhanced recovery characteristics by applying precompression to polyurethane, which basically shows elastic characteristics, and applying superelastic shape memory alloy (SSMA). To verify the characteristics of the polyurethane damper, the concept was first established, and the design details were completed by selecting SSMA and steel, and selecting the precompression size as design variables. In addition, structural tests were conducted to derive response behavior and analyze force resistance performance, residual displacement, recovery rate, and energy dissipation capacity. As a result of the analysis, the polyurethane damper showed that various performances improved when the SSMA wire was applied and the precompression increased.

Characteristic Analysis of Superelastic Shape Memory Alloy Long-Lasting Damper with Pretension (긴장력이 적용된 초탄성 형상기억합금 장수명 댐퍼의 특성 분석)

  • Lee, Heon-Woo;Kim, Young-Chan;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • A seismic structure is an earthquake-resistant design that dissipates seismic energy by equipping the structure with a device called a damper. As research efforts to reduce earthquake damage continue to rise, technology for isolating vibrations in structures has evolved by altering the materials and shapes of dampers. However, due to the inherent nature of the damper, there are an unescapable restrictions on the extent of plastic deformation that occurs in the material to effectively dissipate energy. Therefore, in this study, we proposed a long-life damper that offers semi-permanently usage and enhances structural performance by applying additional tension which is achieved by utilizing super elastic shape memory alloy (SSMA), a material that self-recovers after deformation. To comprehensively understand the behavior of long-life dampers, finite element analysis was performed considering the design variables such as material, wire diameter, and presence of tension, and response behavior was derived to analyze characteristics such as load resistance, energy dissipation, and residual displacement to determine the performance of long-life dampers in seismic structure. Excellence has been proven from finite element analysis results.

Seismic behavior of steel column-base-connection equipped by NiTi shape memory alloy

  • Jamalpour, Reza;Nekooei, Masoud;Moghadam, Abdolreza Sarvghad
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.109-120
    • /
    • 2017
  • The behavior of moment resistant steel structures depends on both the beam-column connections and columns foundations connections. Obviously, if the connections can meet the adequate ductility and resistance against lateral loads, the seismic capacity of these structures will be linked practically to the performance of these connections. The shape memory alloys (SMAs) have been most recently used as a means of energy dissipation in buildings. The main approach adopted by researchers in the use of such alloys is firstly bracing, and secondly connecting the beams to columns. Additionally, the behavior of these alloys is modeled in software applications rarely involving equivalent torsional springs and column-foundation connections. This paper attempts to introduce the shape memory alloys and their applications in steel structural connections, proposing a new steel column-foundation connection, not merely a theoretical model but practically a realistic and applicable model in structures. Moreover, it entails the same functionality as macro modeling software based on real behavior, which can use different materials to establish a connection between the columns and foundations. In this paper, the suggested steel column-foundation connection was introduced. Moreover, exploring the seismic dynamic behavior under cyclic loading protocols and the famous earthquake records with different materials such as steel and interconnection equipment by superelastic shape memory alloys have been investigated. Then, the results were compared to demonstrate that such connections are ideal against the seismic behavior and energy dissipation.

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

Temperature effect on seismic behavior of transmission tower-line system equipped with SMA-TMD

  • Tian, Li;Liu, Juncai;Qiu, Canxing;Rong, Kunjie
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Transmission tower-line system is one of most critical lifeline systems to cities. However, it is found that the transmission tower-line system is prone to be damaged by earthquakes in past decades. To mitigate seismic demands, this study introduces a tuned-mass damper (TMD) using superelastic shape memory alloy (SMA) spring for the system. In addition, considering the dynamic characteristics of both tower-line system and SMA are affected by temperature change. Particular attention is paid on the effect of temperature variation on seismic behavior. In doing so, the SMA-TMD is installed into the system, and its properties are optimized through parametric analyses. The considered temperature range is from -40 to $40^{\circ}C$. The seismic control effect of using SMA-TMD is investigated under the considered temperatures. Interested seismic performance indices include peak displacement and peak acceleration at the tower top and the height-wise deformation. Parametric analyses on seismic intensity and frequency ratio were carried out as well. This study indicates that the nonlinear behavior of SMA-TMD is critical to the control effect, and proper tuning before application is advisable. Seismic demand mitigation is always achieved in this wide temperature range, and the control effect is increased at high temperatures.

Design and testing of a minimally invasive intervertebral cage for spinal fusion surgery

  • Anderson, Walter;Chapman, Cory;Karbaschi, Zohreh;Elahinia, Mohammad;Goel, Vijay
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.283-297
    • /
    • 2013
  • An innovative cage for spinal fusion surgery is presented within this work. The cage utilizes shape memory alloy for its hinge actuation. Because of the use of SMA, a smaller incision is needed which makes the cage deployment minimally invasive. In the development of the cage, a model for predicting the torsional behavior of SMAs was developed and verified experimentally. The prototype design of the cage was developed and manufactured. The prototype was subjected to static tests per ASTM specifications. The cage survived all of the tests, alluding to its safety within the body.

Recentering X-Braced Steel Frames Using Superelastic Shape Memory Alloy (초탄성 형상기억합금을 이용한 원상 복원 X형 철골 가새 골조)

  • Lee, Sung Ju;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.109-119
    • /
    • 2018
  • In this paper a systematic numerical analysis is performed to obtain the energy dissipation and re-centering capacities of diagonal steel braced frames subjected to cyclic loading. This diagonal steel bracing systems are fabricated with super-elastic SMA (Shape Memory Alloy) braces in order to develop a recentering seismic resistance system without residual deformation. The three-dimensional nonlinear finite element models are constructed to investigate the horizontal stiffness, drifts and failure modes of the re-centering bracing systems.