Browse > Article
http://dx.doi.org/10.12989/sss.2015.16.1.183

Simulation of superelastic SMA helical springs  

Mehrabi, Reza (Department of Mechanical Engineering, Vali-e-Asr University of Rafsanjan)
Ravari, Mohammad Reza Karamooz (Department of Mechanical Engineering, Graduate University of Advanced Technology)
Publication Information
Smart Structures and Systems / v.16, no.1, 2015 , pp. 183-194 More about this Journal
Abstract
Shape memory alloy (SMA) helical springs have found a large number of different applications in industries including biomedical devices and actuators. According to the application of SMA springs in different actuators, they are usually under tension and torsion loadings. The ability of SMAs in recovering inelastic strains is due to martensitic phase transformation between austenite and martensite phases. Stress or temperature induced martensite transformation induced of SMAs is a remarkable property which makes SMA springs more superior in comparison with traditional springs. The present paper deals with the simulation of SMA helical spring at room temperature. Three-dimensional phenomenological constitutive model is used to describe superelastic behavior of helical spring. This constitutive model is implemented as a user subroutine through ABAQUS STANDARD (UMAT), and the process of the implementation is presented. Numerical results show that the developed constitutive model provides an appropriate approach to captures the general behavior of SMA helical springs.
Keywords
shape memory alloy; helical spring; martensite transformation; constitutive model; finite element method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aguiar, R.A., Savi, M.A. and Pacheco, Pedro M.C.L. (2010), "Experimental and numerical investigations of shape memory alloy helical springs", Smart Mater. Struct., 19(2), 025008.   DOI
2 Arghavani, J., Auricchio, F., Naghdabadi, R. and Reali, A. (2011), "An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys", Finite Elem. Anal. Des., 47(2), 166-174.   DOI
3 Attanasi, G., Auricchio, F. and Urbano, M. (2011), "Theoretical and experimental investigation on SMA superelastic springs", J. Mater. Eng. Perform., 20(4-5), 706-711.   DOI
4 Auricchio, F., Boatti, E., et al. (2015), Chapter 11 - SMA Biomedical Applications. Shape Memory Alloy Engineering. L. L. Concilio. Boston, Butterworth-Heinemann: 307-341.
5 Bazant, P. and Oh, B. (1986), "Efficient numerical integration on the surface of a sphere", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik 66(1): 37-49.   DOI
6 Brocca, M., Brinson, L.C. and Bazant, Z.P. (2002), "Three-dimensional constitutive model for shape memory alloys based on microplane model", J. Mech. Phys. Solids, 50(5), 1051-1077.   DOI
7 Buehler, W.J., Gilfrich, J.V. and Wiley, R.C. (1963), "Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi", J. Appl. Phys., 34(5), 1475-1477.   DOI
8 de Aguiar, R.A.A., de Castro Leao Neto, W.C., Savi, M.A. and Calas Lopes Pacheco, P.M. (2013), "Shape memory alloy helical springs performance: modeling and experimental analysis", Materials Science Forum, 758, 147-156.   DOI
9 Dong, Y., Boming, Z. and Jun, L. (2008), "A changeable aerofoil actuated by shape memory alloy springs", Mater. Sci. Eng., 485(1), 243-250.   DOI
10 Dumont, G. and Kuhl, C. (2005), "Finite element simulation for design optimisation of shape memory alloy spring actuators", Eng. Comput., 22(7), 835-848.   DOI
11 Graesser, E. and Cozzarelli, F. (1994), "A proposed three-dimensional constitutive model for shape memory alloys", J. Intel. Mat. Syst. Str., 5(1), 78-89.   DOI
12 Karamooz Ravari, M.R. and Kadkhodaei, M. (2014), "A computationally efficient modeling approach for predicting mechanical behavior of cellular lattice structures", J. Mater. Eng. Perform., 1-8.
13 Karamooz Ravari, M.R., Kadkhodaei, M., Badrossamay, M. and Rezaei, R. (2014), "Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling", Int. J. Mech. Sci., 88, 154-161.   DOI
14 Machado, L.G. and Savi, M.A. (2003), "Medical applications of shape memory alloys", Brazilian J. Medical Bio. Res., 36, 683-691.   DOI
15 Kauffman, G. and Mayo, I. (1997), "The story of nitinol: the serendipitous discovery of the memory metal and its applications", The Chemical Educator, 2(2), 1-21.
16 Leukart, M. and Ramm, E. (2003), "A comparison of damage models formulated on different material scales", Comput. Mater. Sci., 28(3), 749-762.   DOI
17 Liang, C. and Rogers, C. (1992), "A multi-dimensional constitutive model for shape memory alloys", J. Eng. Math., 26(3), 429-443.   DOI
18 Mehrabi, R., Andani, M.T., Elahinia, M. and Kadkhodaei, M. (2014a), "Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling", Mech. Mater., 77, 110-124.   DOI
19 Mehrabi, R. and Kadkhodaei, M. (2013), "3D phenomenological constitutive modeling of shape memory alloys based on microplane theory", Smart Mater. Struct., 22(2), 025017.   DOI
20 Mehrabi, R., Kadkhodaei, M., Taheri Andani, M. and Elahinia, M. (2014b), "Microplane modeling of shape memory alloy tubes under tension, torsion, and proportional tension-torsion loading", J. Intel. Mat. Syst. Str., 1045389X14522532.
21 Mehrabi, R., Kadkhodaei, M. and Elahinia, M. (2014c), "Constitutive modeling of tension-torsion coupling and tension-compression asymmetry in NiTi shape memory alloys", Smart Mater. Struct., 23(7), 75021-75035.   DOI
22 Mehrabi, R., Kadkhodaei, M. and Elahinia, M. (2014d), "A thermodynamically-consistent microplane model for shape memory alloys", Int. J. Solids Struct., 51(14), 2666-2675.   DOI
23 Mirzaeifar, R., DesRoches, R. and Yavari, A. (2011), "A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs", Int. J. Solids Struct., 48(3), 611-624.   DOI
24 Mehrabi, R., Taheri Andani, M. Kadkhodaei, M. and Elahinia, M. (2015), "Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings", Exp. Mech., 55, 1151-1164.   DOI
25 Menna, C., Auricchio, F., et al. (2015), Chapter 13 - Applications of Shape Memory Alloys in Structural Engineering. Shape Memory Alloy Engineering. L. L. Concilio. Boston, Butterworth-Heinemann: 369-403.
26 Mehrabi, R., Taheri Andani, M. Kadkhodaei, M., and Elahinia, M. (2015), "Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings", Exp. Mech., 55, 1151-1164.   DOI
27 Mohd Jani, J., Leary, M., Subic, A. and Gibson, M.A. (2014), "A review of shape memory alloy research, applications and opportunities", Mater. Design, 56, 1078-1113.   DOI
28 Nicholson, D.E., Padula II, S.A. and Noebe, R.D., Benafan, O. and Vaidyanathan, R. (2014), "Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs", Smart Mater. Struct., 23(12), 125009.   DOI
29 Panico, M. and Brinson, L. (2007), "A three-dimensional phenomenological model for martensite reorientation in shape memory alloys", J. Mech. Phys. Solids, 55(11), 2491-2511.   DOI
30 Pecora, R. and Dimino, I. (2015), Chapter 10 - SMA for Aeronautics. Shape Memory Alloy Engineering. L. L. Concilio. Boston, Butterworth-Heinemann: 275-304.
31 Saleeb, A., Dhakal, B., Hosseini, M.S. and Padula II, S.A. (2013), "Large scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles", Smart Mater. Struct., 22(9), 094006.   DOI
32 Popov, P. and Lagoudas, D.C. (2007), "A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite", Int. J. Plasticity, 23(10), 1679-1720.   DOI
33 Ravari, M.K., Kadkhodaei, M. and Ghaei, A. (2015), "A microplane constitutive model for shape memory alloys considering tension-compression asymmetry", Smart Mater. Struct., 24(7), 075016.   DOI
34 Reese, S. and Christ, D. (2008), "Finite deformation pseudo-elasticity of shape memory alloys-Constitutive modelling and finite element implementation", Int. J. Plasticity, 24(3), 455-482.   DOI
35 Savi, M.A., Pacheco, P.M.C., Garcia, M.S., Aguiar, R.A., de Souza, L.F.G. and da Hora, R.B. (2015), "Nonlinear geometric influence on the mechanical behavior of shape memory alloy helical springs", Smart Mater. Struct., 24(3), 035012."   DOI
36 Zhou, L., Zheng, L.J., Zhang, H.R. and Zhang, H. (2012), "Effect of oxygen on microstructure of Ni-43Ti-7Al alloy", Mater. Res. Innov., 16(2), 115-120.   DOI