• Title/Summary/Keyword: Supercritical fluid process

Search Result 104, Processing Time 0.031 seconds

Operation of a supercritical fluid extraction process using a fuzzy expert control system (Fuzzy 전문가 제어계를 이용한 초임계 유체 추출 장치의 운전)

  • 이대욱;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.669-675
    • /
    • 1991
  • Based on process analysis as well as extensive operation experience, two fuzzy expert control algorithms, for startup and control, are proposed for a supercritical fluid extraction process which has high interacting multivariable structure. In the proposed algorithms, a new simple defuzzification method which only requires four fundamental arithmetic rules is also presented. Through numerical simulations, control performance using the proposed control algorithm is compared with that of a different fuzzy algorithm by an other researcher and that of conventional PID-type controllers which are tuned by well-known optimal criteria. Also, the proposed control algorithm has been tested to the bench scale supercritical fluid extraction process. As a consequence, the proposed fuzzy expert controller has shown fast and robust control performance while the other controllers show sluggish and/or highly oscillatory responses.

  • PDF

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

The Study on the Spray Characteristics of Supercritical Spray (초임계상태 분무의 분무 특성에 관한 연구)

  • Park, C.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.8-14
    • /
    • 1999
  • The characteristics of the breakup process in supercritical spray is investigated during the injection of supercritical sulfur hexafluoride into dissimilar gases at supercritical pressures and subcritical temperature of the injected fluid. The visualization techniques used are backlighting and shadowgraph methods. The spray angles are measured and the breakup and mixing process are observed at near and supercritical conditions. The results show that spray angles are decreased with the in..ease of the ratio of density $(\frac{\rho_f}{\rho_g})$. At the supercritical temperature, the spray angles in atomization region are kept nearly constant such as the typical spray angle in gas injection. The mixing process is changed radically at the temperature where $\frac{d\rho}{dT}=\frac{1}{2}[\frac{d\rho}{dT}]_{max}$ at given pressure.

  • PDF

Powder Injection Molding of Translucent Alumina using Supercritical Fluid Debinding

  • Kim, Hyung Soo;Byun, Jong Min;Suk, Myung Jin;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.407-414
    • /
    • 2014
  • The powder injection molding process having advantages in manufacturing three-dimensional precision parts essentially requires a debinding process before sintering to remove the binders used for preparing feedstock. In this study, powder injection molding of translucent alumina was performed, and carbon dioxide ($CO_2$) is used as a supercritical fluid that makes it possible to remove a large amount of binder, which is paraffin wax. The relationship between the optical property of translucent alumina and the debinding condition (temperature and pressure) of supercritical $CO_2$ was investigated. As temperature and pressure increased, extraction rate of the binder showed rising tendency and average grain size after sintering process was relatively fine. On the other hand, optical transmittance was reduced. As a result, the debinding condition at $50^{\circ}C$ and 20 MPa that represents the lowest extraction rate, $8.19{\times}10^{-3}m^2/sec$, corresponds to the largest grain size of $14.7{\mu}m$ and the highest optical transmittance of 45.2%.

The Influence of the Contact Amount of Supercritical CO2 on Dyeing Uniformity (초임계 CO2 접촉량이 염색 균염성에 미치는 영향에 대한 연구)

  • Park, Shin;Choi, Hyunseuk;Kim, Taeyoung;Song, Taehyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • The influence of the contact amount of carbon dioxide per unit mass of dyestuff(${\alpha}$) on dyeing uniformity in supercritical fluid dyeing is analyzed in this study. The experiments using a 5L class Pilot Scale dyeing machine is carried out for this study purpose. For a fixed temperature and pressure, the amount of sample and the dyeing leveling time were considered as process variables. The results show that the increase in the amount of the sample causes a higher color difference than the reference sample, and it also increases the amount of residual dye. On the other hand, the color difference tended to decrease with the increase in dyeing time. Based on these results, the correlation between ${\alpha}$ value and dyeing uniformity in supercritical fluid dyeing is obtained.

Supercritical CO2 Dyeing and Finishing Technology - A Review (초임계 이산화탄소 염색 및 가공 기술)

  • Lee, Gyoyoung;Chae, Juwon;Lee, Sang Oh;Kim, Sam Soo;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.31 no.1
    • /
    • pp.48-64
    • /
    • 2019
  • With evolution in the production environment of the textile industry, the need for non-water-based dyeing technologies and eco-friendly process facilities in the dyeing and processing stages has increased. In recent years, supercritical fluid dyes have been developed and commercialized in Europe, centering on this demand. However, so far, such dyes have been mainly applied in the processing of PET fibers. Basic research has mainly involved investigation of dyeing by supercritical carbon dioxide or solubility of such dyes, and more in-depth research should be continuously carried out. In this review, we describe the types and characteristics of supercritical fluids that exhibit specific properties at pressures and temperatures over the critical point. In addition, the state of the art in the dyeing and processing technology using supercritical fluids and associated, processing problems, environmental regulation, and wastewater treatment issues are described in detail. We hope this review can contribute to the supercritical fluid technology being further developed as an environment friendly dyeing processing method. Furthermore, we expect that the technique can be used as a means of ensuring different, high-quality dyed products.

Structural Characteristics of Graphene Prepared in Supercritical Fluids and Thermal Conductivity of Graphene/Epoxy Composites (초임계유체 조건에서 제조된 그래핀의 구조분석과 그래핀/에폭시 수지조성물의 열전도 특성)

  • Oh, Weontae;Choi, Gyuyeon
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.277-282
    • /
    • 2021
  • Graphene oxide can be reduced to graphene under supercritical fluid condition even without using a specific reducing agent or applying a high thermal process. In this study, a process for converting graphene oxide into graphene was studied under supercritical fluid conditions in methanol and ethanol solvents. When the structure of asprepared graphene was analyzed by using FE-SEM and XRD, the reduction of graphene oxide in supercritical fluid condition was more affected by the change of solvent than other variables such as concentration of graphene oxide and reaction time. The use of ethanol showed better results for the reduction than the use of methanol. The graphene prepared in this study was mixed with epoxy resin up to 20 wt.% to make composites, and the thermal conductivity of the composites were analyzed. Thermal conductivity of the composite increased proportionally with graphene loadings. The graphene prepared in supercritical ethanol condition was more effective on the thermal conductivity of the composite.

Preparation and Characterization of Lysozyme Nanoparticles using Solution Enhanced Dispersion by Supercritical Fluid (SEDS) Process (용액분산촉진 초임계 공정을 이용한 라이소자임 나노 입자의 제조 및 그 특성)

  • Kim, Dong-Hyun;Park, Hee-Jun;Kang, Sun-Ho;Jun, Seoung-Wook;Kim, Min-Soo;Lee, Si-Beum;Park, Jeong-Sook;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.89-94
    • /
    • 2005
  • The micron or nano-sized lysozyme as a model protein drug was prepared using solution enhanced dispersion by supercritical fluid (SEDS) process at various conditions (e.g., solvent, temperature and pressure) to investigate the feasibility of pulmonary protein drug delivery. The lysozyme particles prepared were characterized by laser diffraction particle size analyzer, scanning electron microscopy (SEM) and powder X-ray diffractometry (PXRD). The biological activity of lysozyme particles after/before SEDS process was also examined. Lysozyme was precipitated as spherical particles. The precipitated particles consisted of 100 - 200 nm particles. Particle size showed the precipitates to be agglomerates with primary particles of size $1\;-\;5 \;{\mu}m$. The biological activity varied between 38 and 98% depending on the experimental conditions. There was no significant difference between untreated lysozyme and lysozyme after SEDS process in PXRD analysis. Therefore, the SEDS process could be a novel method to prepare micron or nano-sized lysozyme particles, with minimal loss of biological activity, for the pulmonary delivery of protein drug.

Preparation of Micro- and Submicron-Particles of a Poorly Water-Soluble Antifungal Drug Using Supercritical Fluid Process (초임계유체공정을 이용한 난용성 항진균제의 미세입자 제조)

  • Kim, Seok-Yun;Lee, Jung-Min;Won, Byoung- Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.80-87
    • /
    • 2010
  • In this study, micro- and submicron particles of itraconazole, a poorly water-soluble antifungal drug, were prepared for improving its aqueous solubility using an ultrasound-assisted supercritical fluid technique, called SAS-EM. The SAS-EM process used in our experiments was different from the conventional SAS-EM in that the ultrasound was applied directly to the spray nozzle. The effect of the ultrasonic power, temperature, and solvent on the formation of itraconazole particles were investigated. Smaller particles were obtained through our SAS-EM process compared with the ASES process, and the mean particle size decreased as the ultrasonic power increased. Our experimental results confirmed that the ultrasound-assisted supercritical fluid process is an efficient method for producing ultrafine particles.

Application of Supercritical Fluid in Energetic Materials Processes (화약제조 공정의 초임계 유체 응용)

  • Song, Eun-Seok;Kim, Hwa-Yong;Kim, Hyoun-Soo;Lee, Youn-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.77-87
    • /
    • 2006
  • Micro- or nano-size particles are required to improve the combustion efficiency and stability in the case of solid explosives and propellants. The micro-structural properties of an energetic material strongly influence the combustion and explosion behavior. However, the traditional size reduction techniques, including milling, are not suitable for production of ultra-fine size particles. As an alternative to the traditional techniques, various re-crystallization processes based on supercritical fluids have recently been proposed. Supercritical fluids are fluids at temperatures and pressures above their critical point. In principle, they do not give problems of solvent contamination as they are completely released from the solute when the decompression occurs. Rapid Expansion Supercritical Solutions(RESS) and Supercritical Anti-Solvent Process(GAS/SAS) are representatives of a nano-size particle formation process of energetic materials using supercritical fluids. In this work, various fine particle formation processes using supercritical fluids are discussed and the results are presented.