• Title/Summary/Keyword: Supercritical fluid method

Search Result 107, Processing Time 0.026 seconds

Recycling of Carbon Particle from Phenol Resin Waste using Supercritical Fluid (초임계 유체를 이용한 폐페놀수지로부터 카본입자 재활용 연구)

  • Cho, Hang-Kyu;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.220-224
    • /
    • 2017
  • In this study, we investigated a new recycling method of phenol resin, which is widely used to make electric insulation boards and adhesives, into carbon particles by using supercritical fluids. Because phenol resin is insoluble and infusible, most of the phenol resin wastes are buried in the ground or incinerated, which leads to environmental pollution. Therefore, development of a new method to recycle phenol resin waste is an urgent issue. In this study, phenol resin waste was treated with four sub/supercritical solvents: ethanol, acetone, water, and methanol. For all the sub/supercritical solvents, the phenol resin wastes were broken down into carbon nano particles at much lower temperatures than that required in the existing carbon particle manufacturing processes. We investigated the difference of morphologies and physical properties of recycled carbon particles according to the use of various solvents. As a result, carbon nano particles with the same amorphous structure were obtained from phenol resin waste with the usage of various sub/supercritical solvents at much lower temperature.

A Rapid Method for Analysing Polycyclic Aromatic Hydrocarbons (PAH's) in Urban Dust Using Supercritical Fluid Extraction (SFE) and Gas Chromatography/Mass Spectrometry (GC/MS)허귀석, 김달호 (초임계유체추출과 GC/MS를 이용한 도심 대기분진 중 PAH들의 신속한 분석법에 관한 연구)

  • Heo, Gwi Seok;Kim, Dal Ho
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.726-733
    • /
    • 1994
  • Supercritical fluid extraction (SFE) followed by gas chromatographic separation and mass spectrometric (MS) detection were used in rapid analysis of polycyclic aromatic hydrocarbons (PAH's) in air particulate material extracted for 30 min with 10 ml of supercritical $N_2O$ without another sample preparation step. Two samples, urban dust in Seoul area and a certified air particulate reference material 1649 supplied by the NBS (National Bureau of Standards), were processed for the purpose of evaluating extraction and analysis methods. As a result, the quantitative recovery of PAH's in the SFE method was relatively lower than conventional organic solvent extraction methods, but reproducibility was resonable, and analysis time was reduced remarkably. The method has proved to be suitable for monitoring of PAH's in air particulate material.

  • PDF

Coffee Deodorization with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 커피의 탈취)

  • Lee, Joo-Hee;Kim, Hyung-Bae;Byun, Sang-Yo
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.336-340
    • /
    • 2007
  • Supercritical carbon dioxide was used to remove coffee odors. The odor removal efficiency was tested with coffee drink prepared by the espresso extraction method. Five typical odors in coffee were analyzed with GC and these odors in deodorized coffee were compared to those in control. Supercritical carbon dioxide extraction conditions were optimized as 350 bar and 70$^{\circ}C$ because the solvating power of supercritical fluid is depend on the density which is determined by temperature and pressure. A modified head space method was applied to collect coffee odors in coffee drink prepared by the espresso extraction method. Odors generated in coffee drink made with deodorized coffee powder were reduced by 73% in total mass of typical five coffee odors.

Chiral Separation of Ibuprofen by Supercritical Fluid Chromatography (초임계유체 크로마토그래피를 이용한 Ibuprofen의 키랄분리)

  • 한순구;노경호
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.263-268
    • /
    • 2004
  • The separation method using chiral stationary phase in preparation of chiral compound was wildly used, but in this work, supercritical fluid chromatography was suggested in the stability to resolve the chiral mixtures. To determine the optimum operating condition of the racemic ibuprofen, the retention factor and resolution with change in pressures, temperatures and the contents of IPA % (vol.) in CO$_2$ were investigated. The retention factor was decreased with increase in pressure and decrease in temperature. The factor was also influenced by the content of IPA in mobile phase, while the resolution was worse with a increase in IPA %. From the experimental results, the desirable separation condition was 130 bar, 311.15 K and 4% IPA in CO$_2$. Compared to the asymmetric peak shape by liquid chromatography, that of supercritical fluid chromatography was symmetric which was a favorable condition for preparative separation.

Preparation and Characterization of Lysozyme Nanoparticles using Solution Enhanced Dispersion by Supercritical Fluid (SEDS) Process (용액분산촉진 초임계 공정을 이용한 라이소자임 나노 입자의 제조 및 그 특성)

  • Kim, Dong-Hyun;Park, Hee-Jun;Kang, Sun-Ho;Jun, Seoung-Wook;Kim, Min-Soo;Lee, Si-Beum;Park, Jeong-Sook;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.89-94
    • /
    • 2005
  • The micron or nano-sized lysozyme as a model protein drug was prepared using solution enhanced dispersion by supercritical fluid (SEDS) process at various conditions (e.g., solvent, temperature and pressure) to investigate the feasibility of pulmonary protein drug delivery. The lysozyme particles prepared were characterized by laser diffraction particle size analyzer, scanning electron microscopy (SEM) and powder X-ray diffractometry (PXRD). The biological activity of lysozyme particles after/before SEDS process was also examined. Lysozyme was precipitated as spherical particles. The precipitated particles consisted of 100 - 200 nm particles. Particle size showed the precipitates to be agglomerates with primary particles of size $1\;-\;5 \;{\mu}m$. The biological activity varied between 38 and 98% depending on the experimental conditions. There was no significant difference between untreated lysozyme and lysozyme after SEDS process in PXRD analysis. Therefore, the SEDS process could be a novel method to prepare micron or nano-sized lysozyme particles, with minimal loss of biological activity, for the pulmonary delivery of protein drug.

Fabrication of Nono-Size Crystalline $TiO_2$ Powders for Photocatalyst Using (초임계 유체를 이용한 광촉매용 나노크기의 결정질 $TiO_2$ 분말 제조)

  • Lim, Dae-Young;Kim, Jong-Ock;Kim, Taik-Nam;Lee, Chae-Hyun;Park, Won-Kyu
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.207-213
    • /
    • 1998
  • In order to fabricate ideal powders, new processing is necessary in which the solute atoms in solution rapidly move to mix each other to the degree of molecular level, the viscosity of solution should be low not to effect the moving of solute atoms, and the powders could be directly obtained as crystalline. Supercritical fluid is defined as condensed gas state up to its critical pressure and temperature. In this paper, supercritical fluid methods were studied as a new ceramic processing of powder preparation. The crystalline anatase powders of $TiO_2$ which are useful for photocatalyst materials were fabricated by hydrolysis of titanium(IV) ethoxide using water which was ethanol as a supercritical fluid.

  • PDF

Preparation of Micro- and Submicron-Particles of a Poorly Water-Soluble Antifungal Drug Using Supercritical Fluid Process (초임계유체공정을 이용한 난용성 항진균제의 미세입자 제조)

  • Kim, Seok-Yun;Lee, Jung-Min;Won, Byoung- Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.80-87
    • /
    • 2010
  • In this study, micro- and submicron particles of itraconazole, a poorly water-soluble antifungal drug, were prepared for improving its aqueous solubility using an ultrasound-assisted supercritical fluid technique, called SAS-EM. The SAS-EM process used in our experiments was different from the conventional SAS-EM in that the ultrasound was applied directly to the spray nozzle. The effect of the ultrasonic power, temperature, and solvent on the formation of itraconazole particles were investigated. Smaller particles were obtained through our SAS-EM process compared with the ASES process, and the mean particle size decreased as the ultrasonic power increased. Our experimental results confirmed that the ultrasound-assisted supercritical fluid process is an efficient method for producing ultrafine particles.

Photocatalayst and Decomposition Properties of TiO2 and TiO2-CdS Powders Prepared by Supercritical Fluid Method (초임계 유체법으로 제조한 TiO2 및 TiO2-CdS계 광촉매의 분해물성 연구)

  • 전일수;황수현;박상준;길현식;조승범;전명석;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.481-484
    • /
    • 2004
  • TiO$_2$ and TiO$_2$-CdS powders which were expected to be highly activated photocatalysts were prepared using supercritical fluid method (SCF). The prepared photocatalyst TiO$_2$ powders were crystalline of anatase and ultrafine spherical powders with large specific surface area. When photodecompositoion reaction was done with TiO$_2$ powders prepared by SCF as a photocatalyst in DCA (Dichloroactic Acid) solution, a hazardous organic compound, the photocatlyst, properties of TiO$_2$ powders prepared by SCF were better than that of commercial TiO$_2$ powders.

Quantitative Extraction Analysis of Brominated Flame Retardant Substances Using Supercritical-Fluid Method for Environmental Assessment (초임계추출법을 이용한 브롬계 난연제 화합물 환경성 평가 추출효율 분석 연구)

  • Oh, Min-Kyung;Yoon, Sang-Hwa;Lee, Young-Kwan;Han, Jae-Sung;Won, Sung-Ho;Nam, Jae-Do
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • For the evaluation of brominated flame retardants included in polymeric electronic devices, we investigated the extraction methods and solvent systems for four different types of polymers of PC (polycarbonate), PP (polyropylene), PET (poly(ethylene terephthalate)) and PBT (poly(butylene terephthalate)) using different solvent systems of hexane/acetone, THF, toluene, and THF/toluene. In order to compare the extraction efficiency of different methods and solvent systems, the deca-BDE (decabromo diphenyl ether) flame retardant was included in PC, PP, PET and PBT systems and subsequently extracted by soxhlet, ultrasonic, accelerated solvent, microwave and supercritical fluid extraction methods. The amount of the extracted flame retardant was monitored to evaluate the extraction efficiency. The ultrasonic extraction method was found not to be acceptable as an extraction method for the polymer systems mainly due to a low salvation efficiency of the organic solvents. Soxhlet, accelerated solvent and microwave extraction methods exhibited over 80% of extraction efficiency for toluene. The supercritical fluid extraction method, which has been used as an extraction method for flame retardants in polymers, showed the extraction efficiencies of ca. 100% for PC and PP in the optimal extraction conditions of $60^{\circ}C$ and 120 bar.