• Title/Summary/Keyword: Supercritical carbon dioxide

Search Result 363, Processing Time 0.027 seconds

Characterization of the Yellow Croaker Larimichthys polyactis muscle Oil Extracted with Supercritical Carbon Dioxide and an Organic Solvent

  • Lee, Joo-Hee;Asaduzzaman, A.K.M.;Yun, Jun-Ho;Yun, Jun-Hyun;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.275-281
    • /
    • 2012
  • Yellow croaker Larimichthys polyactis muscle oil was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-$CO_2$), in a semi-batch flow extraction process. SC-$CO_2$ was applied at temperature $35^{\circ}C$ to $45^{\circ}C$ and $150^{\circ}C$ to $250^{\circ}C$ bar of pressure. The flow rate of $CO_2$ (27.79 g/min) was constant throughout the entire 1.5 h extraction period. The oil extraction yield was influenced by the physical properties of SC-$CO_2$ at different temperatures and pressures. The extracted oil was analyzed by gas chromatography to determine the fatty acid composition. According to our results, the SC-$CO_2$ extracted oil was high in eicosapentaenoic acid and docosahexaenoic acid. In addition, the SC-$CO_2$ extracted oil showed greater stability than n-hexane extracted oil based on the peroxide value and acid value. Thus, the quality of yellow croaker oil obtained by SC-$CO_2$ extraction was slightly higher than that of oil obtained by n-hexane extraction.

The Effect of Supercritical Carbon Dioxide Treatment on Physical Properties Improvement of Fulvic Acid (초임계 이산화탄소로 처리된 풀빅산 함유 용액의 물리적 특성 개선 효과)

  • Lee, Joo-Hee;Park, Jung-Nam;Chun, Byung-Soo
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.523-528
    • /
    • 2011
  • The objective of this study was to reduce negative elements such as volatile organic compounds (VOCs) from fulvic acid using supercritical carbon dioxide ($SCO_2$) and to measure concentration and chromaticity of fulvic acid before and after treatment of $SCO_2$. Fulvic acid was treated at different experimental conditions; pressures of 100, 120 and 150 bar at $40^{\circ}C$ for 2 h. The composition of VOCs from fulvic acid was evaluated by GC-MS analysis, and the concentration was quantitatively analyzed using UV-spectrometer from fulvic acid at different experimental conditions. Also, the chromaticity of fulvic acid was evaluated using spectrophotometer. Though concentration and chromaticity of fulvic acid were not nearly changed, the VOCs from fulvic acid was remarkably decreased at 150 bar, $40^{\circ}C$ and 2 h. Reduction of VOCs through the $SCO_2$ is expected to contribute to quality improvement of fulvic acid.

Characterization of Concentrated Proteins Recovered from Anchovy Engraulis japonicus using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용하여 멸치(Engraulis japonicus)로부터 회수된 고농축 단백질의 특성)

  • Lee, Seung-Mi;Yun, Jun-Ho;Lee, Joo-Hee;Chun, Byung-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.3
    • /
    • pp.201-206
    • /
    • 2012
  • Supercritical carbon dioxide ($SCO_2$) extraction was used to recover concentrated proteins and to remove lipids and odor causing compounds from anchovy. Engraulis japonicus $SCO_2$ was used as the solvent for extraction, which was performed in a semi-batch flow reactor. The experimental conditions used were pressure, 15-25 MPa; temperature, $40-60^{\circ}C$ and sample size, 500 ${\mu}m$. The proteins obtained under these conditions performed well in a sensory evaluation; moreover, effective lipids and odor removal was achieved. The stability and characteristics of the proteins recovered with different solvents were also evaluated. The samples were sterilized by processing with $SCO_2$. Escherichia coli was not detected after storage for several days. The sensory characteristics were found to be superior to those of a sample produced by hexane extraction. Thus, the protein concentrate was obtained at $60^{\circ}C$ and 25 MPa was deemed valuable as a foodstuff.

Impact of High Temperature on the Maillard Reaction between Ribose and Cysteine in Supercritical Carbon Dioxide

  • Xu, Honggao;He, Wenhao;Liu, Xuan;Gao, Yanxiang
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • An aqueous ribose-cysteine model system (initial pH 5.6) was conventionally heated to the same browning at varying temperatures ($120-180^{\circ}C$), supercritical carbon dioxide (SC-$CO_2$, 20 MPa) was also applied on the same matrices for same periods at each temperature and about 20% reduction of the absorbance at 420 nm was observed as compared with sole thermal treatment. The headspace volatiles from Maillard reaction mixtures were analyzed by solid-phase microextraction (SPME) in combination with gas chromatography and mass spectrometry (GC-MS), and predominated with sulfur containing compounds, such as thienothiophenes, polysulfur alicyclics, thiols, and disulfides. Reaction temperature exhibited complex effects on volatiles formation and those effects became further complicated by the SC-$CO_2$ treatment. The formation of noncarbonyl polysulfur heterocyclic compounds and thienothiophenes was generally favored at high temperatures. Most volatiles were inhibited in SC-$CO_2$ as compared with thermal treatment alone, however, the well-known meaty aromatic compounds, such as thiols and disulfides, were obviously enhanced.

Preparation of Porous Polymer Monoliths in Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 다공성 고분자 Monolith 제조)

  • Kang, Se Ran;Ju, Chang Sik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • Experimental researches on the preparation of porous polymeric monoliths in supercritical carbon dioxide have been performed and the effects of monomer and polymerization parameters on the physical properties of the monolith prepared were examined. Polymerizations were carried out in the high pressure stainless steel reactor with sapphire window to show the phase change during the polymerization reaction, and continuous and dry porous monolithic polymer could be obtained. The specific surface area of monolithic polymer increased with monomer contents in reaction mixture and reaction pressure. The Rockwell hardness could be enhanced by the addition of co-monomer MMA in reaction mixtures.

Sorption Equilibria of C. I. Disperse Yellow 54 Dye between Supercritical Carbon Dioxide and PTT and PET Textiles (초임계이산화탄소와 PTT및 PET섬유 사이에서 C. I. Disperse Yellow 54 염료의 수착평형)

  • Ihm, Bang-Hyun;Choi, Jun-Hyuck;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.173-179
    • /
    • 2007
  • In this study the amount of equilibrium sorption of C.I. Disperse Yellow 54 dye in the polymeric textiles such as PTT (poly(trimethylene terephthalate)) and PET (poly(ethylene terephthalate)) textiles was measured in the presence of supercritical carbon dioxide at different temperatures, pressures, and time. The amount of dye sorption increased with temperature and pressure in both PTT and PET textiles, but the increasing rate decreased with pressure. The PTT textile has much larger dye sorption than PET textile. The increasing rate of dye sorption decreased with time at same temperature and pressure for both PTT and PET textiles.

  • PDF

Preparation and Characterization of Polypropylene/Waste Ground Rubber Tire Powder Microcellular Composites by Supercritical Carbon Dioxide

  • Zhang, Zhen Xiu;Lee, Sung-Hyo;Kim, Jin-Kuk;Zhang, Shu Ling;Xin, Zhen Xiang
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.404-410
    • /
    • 2008
  • In order to obtain 'value added products' from polypropylene (PP)/waste ground rubber tire powder (WGRT) composites, PP/WGRT microcellular foams were prepared via supercritical carbon dioxide. The effects of blend composition and processing condition on the cell size, cell density and relative density of PP/WGRT micro-cellular composites were studied. The results indicated that the microcellular structure was dependent on blend composition and processing condition. An increased content of waste ground rubber tire powder (WGRT) and maleic anhydride-grafted styrene-ethylene-butylene-styrene (SEBS-g-MA) reduced the cell size, and raised the cell density and relative density, whereas a higher saturation pressure increased the cell size, and reduced the cell density and relative density. With increasing saturation temperature, the cell size increased and the relative density decreased, whereas the cell density initially increased and then decreased.

Desorption Characteristics of Grinding Oil from Swarf by using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 스와프로부터 연마유 탈착 특성)

  • Yang, Jun Youl;Lee, Youn-Woo;Lim, Jong Sung
    • Clean Technology
    • /
    • v.10 no.3
    • /
    • pp.139-148
    • /
    • 2004
  • The recovery of stainless steel fiber by removing cutting oil from grinding swarf, which is classified as specified wastes, was investigated. Swarf loaded with grinding oil was regenerated by supercritical carbon dioxide. And, the effects of temperature(313.15K-323.15K), pressure(10MPa-30MPa) on regeneration efficiency were studied. Regeneration effiency was increased as the pressure was increased. Also, at the same pressure, the experiments at higher temperature were more efficient for regeneration. The experiment results was predicted by applying a one-parameter mathematical model assuming linear desorption kinetics. The predicted value showed good agreement with experimental data.

  • PDF

Isolation of Off-flavors and Odors from Tuna Fish Oil Using Supercritical Carbon Dioxide

  • Roh, Hyung-Seob;Park, Ji-Yeon;Park, Sun-Young;Chun, Byung-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.496-502
    • /
    • 2006
  • Off-flavors and unfavorable odors in tuna fish oil were successfully removed and identified using supercritical carbon dioxide extraction, while retaining variable compounds, polyunsaturated fatty acids such as EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). Samples of oil were extracted in a 100 mL semi-batch stainless steel vessel under conditions which ranged from 8 to 20 MPa and $20\;to\;60^{\circ}C$ with solvent ($CO_{2}$) flows from 10 g/min. GC-MS was used to identify the main volatile components contributing to the off-flavors and odors which included 2-methyl-1-propanol, 2,4-hexadienal, cyclopropane, and octadiene. Analyses of oil extracted at $40^{\circ}C$, 20 MPa showed a 99.8% reduction in dimethyl disulfide. Other significant off-flavors identified were 2-methyl-butene, 3-hydroxy butanal and ethylbenzene.

Preparation of Silicone Rubber Membrane and its Porosity (Silicone Rubber Membrane의 제조 및 기공특성)

  • Lee, Seung-Bum;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.185-194
    • /
    • 1995
  • Membrane process has been employed to separate a specific substance from gas or liquid mixture, and treat wastewater. This is due to the fact that the substance of mixture can be permeated and separated selectively by membrane. Since Initial equipment and operation costs are not expensive, membrane process has been adopted in various fields such as petroleum Industry, chemistry, polymer, electronics, foods, biochemical industry and wastewater treatment. In this study, $CaCO_3$ particles impregnated in silicone rubber network were extracted by using supercritical carbon dioxide and pore distribution of silicone $rubber-CaCO_3$ was investigated with varying amount of extract. Silicone rubber has excellent mechanical properties such as heat-resistance, cold-resistance etc. and $CaCO_3$ has microporous structure. It is possible to make silicone $rubber-CaCO_3$ composite sheets via work-intensive kneading processes. In so doing $CaCO_3$ particles become distributed and impregnated in silicone rubber network. Supercritical carbon dioxide diffuse through composite sample, then sample is swollen. $CaCO_3$ in silicone rubber network Is dissolved in supercritical carbon dioxide, and its sites become pores. Pore distribution, pore shape and surface area are observed by SEM(scanning electron microscope) micrograph and BET surface area analyzer examination respectively. Pore characteristics of membrane suggest the possibilities that the membrane can be used for process of mixture separation and wastewater treatment.

  • PDF