• Title/Summary/Keyword: Supercritical $CO_2$ Power Cycle

Search Result 26, Processing Time 0.026 seconds

Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation

  • Petroski, Robert;Bates, Ethan;Dionne, Benoit;Johnson, Brian;Mieloszyk, Alex;Xu, Cheng;Hejzlar, Pavel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.877-887
    • /
    • 2022
  • A new reactor concept is described that directly couples a supercritical CO2 (sCO2) power cycle with a CO2-cooled, heavy water moderated pressure tube core. This configuration attains the simplification and economic potential of past direct-cycle sCO2 concepts, while also providing safety and power density benefits by using the moderator as a heat sink for decay heat removal. A 200 MWe design is described that heavily leverages existing commercial nuclear technologies, including reactor and moderator systems from Canadian CANDU reactors and fuels and materials from UK Advanced Gas-cooled Reactors (AGRs). Descriptions are provided of the power cycle, nuclear island systems, reactor core, and safety systems, and the results of safety analyses are shown illustrating the ability of the design to withstand large-break loss of coolant accidents. The resulting design attains high efficiency while employing considerably fewer systems than current light water reactors and advanced reactor technologies, illustrating its economic promise. Prospects for the design are discussed, including the ability to demonstrate its technologies in a small (~20 MWe) initial system, and avenues for further improvement of the design using advanced technologies.

ASSESSMENT OF GAS COOLED FAST REACTOR WITH INDIRECT SUPERCRITICAL $CO_2$ CYCLE

  • Hejzlar, P.;Dostal, V.;Driscoll, M.J.;Dumaz, P.;Poullennec, G.;Alpy, N.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.109-118
    • /
    • 2006
  • Various indirect power cycle options for a helium cooled gas cooled fast reactor (GFR) with particular focus on a supercritical $CO_2(SCO_2)$ indirect cycle are investigated as an alternative to a helium cooled direct cycle GFR. The balance of plant (BOP) options include helium-nitrogen Brayton cycle, supercritical water Rankine cycle, and $SCO_2$ recompression Brayton power cycle in three versions: (1) basic design with turbine inlet temperature of $550^{\circ}C$, (2) advanced design with turbine inlet temperature of $650^{\circ}C$ and (3) advanced design with the same turbine inlet temperature and reduced compressor inlet temperature. The indirect $SCO_2$ recompression cycle is found attractive since in addition to easier BOP maintenance it allows significant reduction of core outlet temperature, making design of the primary system easier while achieving very attractive efficiencies comparable to or slightly lower than, the efficiency of the reference GFR direct cycle design. In addition, the indirect cycle arrangement allows significant reduction of the GFR &proximate-containment& and the BOP for the $SCO_2$ cycle is very compact. Both these factors will lead to reduced capital cost.

Preliminary Design of the Supercritical $CO_2$ Brayton Cycle Energy Conversion System (초임계 이산화탄소 Brayton 에너지 전환계통 예비설계)

  • Cha, Jae-Eun;Eoh, Jae-Hyuk;Lee, Tae-Ho;Sung, Sung-Hwan;Kim, Tae-Woo;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3181-3188
    • /
    • 2008
  • The supercritical $CO_2$ Brayton cycle energy conversion system is presented as a promising alternative to the present Rankine cycle. The principal advantage of the S-$CO_2$ gas is a good efficiency at a modest temperature and a compact size of its components. The S-$CO_2$ Brayton cycle coupled to a SFR also excludes the possibilities of a SWR (Sodium-Water Reaction) which is a major safety-related event, so that the safety of a SFR can be improved. KAERI is conducting a feasibility study for the supercritical carbon dioxide (S-$CO_2$) Brayton cycle power conversion system coupled to KALIMER(Korea Advanced LIquid MEtal Reactor). The purpose of this research is to develop S-$CO_2$ Brayton cycle energy conversion systems and evaluate their performance when they are coupled to advanced nuclear reactor concepts of the type under investigation in the Generation IV Nuclear Energy Systems. This paper contains the research overview of the S-$CO_2$ Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system.

  • PDF

REVIEW OF SUPERCRITICAL CO2 POWER CYCLE TECHNOLOGY AND CURRENT STATUS OF RESEARCH AND DEVELOPMENT

  • AHN, YOONHAN;BAE, SEONG JUN;KIM, MINSEOK;CHO, SEONG KUK;BAIK, SEUNGJOON;LEE, JEONG IK;CHA, JAE EUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.647-661
    • /
    • 2015
  • The supercritical $CO_2$ (S-$CO_2$) Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the S-$CO_2$ cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Several heat sources including nuclear, fossil fuel, waste heat, and renewable heat sources such as solar thermal or fuel cells are potential application areas of the S-$CO_2$ cycle. In this paper, the current development progress of the S-$CO_2$ cycle is introduced. Moreover, a quick comparison of various S-$CO_2$ layouts is presented in terms of cycle performance.

Simulation of a Supercritical Carbon Dioxide Power Cycle with Preheating (예열기를 갖는 초임계 이산화탄소 동력 사이클의 시뮬레이션)

  • Na, Sun-Ik;Baik, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.787-793
    • /
    • 2015
  • In response to the growing interest in supercritical carbon dioxide ($S-CO_2$) power cycle technology because of its potential enhancement in compactness and efficiency, the $S-CO_2$ cycles have been studied intensively in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. Despite this interest, there are relatively few studies on waste heat recovery applications. In this study, the $S-CO_2$ cycle that has a split flow with preheating was modeled and simulated. The variation in the power was investigated with respect to the changes in the value of a design parameter. Under the simulation conditions considered in this study, it was confirmed that the design parameter has an optimal value that can maximize the power in the $S-CO_2$ power cycle that has a split flow with preheating.

The Technology Development Trends of Supercritical CO2 Power Generation (초임계 CO2 발전 기술개발 동향)

  • Kim, Beom-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.531-536
    • /
    • 2016
  • The worldwide research and development for high-efficiency power generation system is progressing steadily because of the growing demand for reducing greenhouse gas emissions. Many countries have spurred the research and development of supercritical $CO_2$ power generation technology since 2000 because it has the advantage of compactness, efficiency, and diversity. Supercritical $CO_2$ power generation system can be classified into an indirect heating type and a direct heating type. As of now, most studies have concentrated on the development of indirect type supercritical $CO_2$ power generation system. In the United States, NREL(National Renewable Energy Lab.) is developing supercritical $CO_2$ power generation system for Concentrating Solar Power. In addition, U.S. DOE(Department of Energy) also plans to start investing in the development of the supercritical $CO_2$ power generation system for coal-fired thermal power plant this year. GE is developing not only 10MW supercritical $CO_2$ power generation turbomachinery but also the conceptual design of 50MW and 450MW supercritical $CO_2$ power generation turbomachinery. In Korea, the Korean Atomic Energy Research Institute has constructed the supercritical $CO_2$ power generation test facility. Moreover, KEPRI(Korea Electric Power Research Institute) is developing a 2MW-class supercritical $CO_2$ power generation system using diesel and gas engine waste heat with Hyundai Heavy Industries.

DEVELOPMENT OF A SIMPLIFIED MODEL FOR ANALYZING THE PERFORMANCE OF KALIMER-600 COUPLED WITH A SUPERCRITICAL CARBON DIOXIDE BRAYTON ENERGY CONVERSION CYCLE

  • Seong, Seung-Hwan;Lee, Tae-Ho;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.785-796
    • /
    • 2009
  • A KALIMER-600 concept which is a type of sodium-cooled fast reactor, has been developed at KAERI. It uses sodium as a primary coolant and is a pool-type reactor to enhance safety. Also, a supercritical carbon dioxide ($CO_2$) Brayton cycle is considered as an alternative to an energy conversion system to eliminate the sodium water reaction and to improve efficiency. In this study, a simplified model for analyzing the thermodynamic performance of the KALIMER-600 coupled with a supercritical $CO_2$ Brayton cycle was developed. To develop the analysis model, a commercial modular modeling system (MMS) was adopted as a base engine, which was developed by nHance Technology in USA. It has a convenient graphical user interface and many component modules to model the plant. A new user library for thermodynamic properties of sodium and supercritical $CO_2$ was developed and attached to the MMS. In addition, some component modules in the MMS were modified to be appropriate for analysis of the KALIMER-600 coupled with the supercritical $CO_2$ cycle. Then, a simplified performance analysis code was developed by modeling the KALIMER-600 plant with the modified MMS. After evaluating the developed code with each component data and a steady state of the plant, a simple power reduction and recovery event was evaluated. The results showed an achievable capability for a performance analysis code. The developed code will be used to develop the operational strategy and some control logics for the operation of the KALIMER-600 with a supercritical $CO_2$ Brayton cycle after further studies of analyzing various operational events.

Introduction to supercritical CO2 power conversion system and its development status (초임계 CO2 발전시스템 소개 및 개발동향)

  • Lee, Jeong Ik;Ahn, Yoonhan;Cha, Jae Eun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.95-103
    • /
    • 2014
  • During the international effort to develop the next generation nuclear reactor technologies, many new power cycle concepts were derived to improve efficiency and reduce the capital cost. Among many innovative power cycles, it was identified that the supercritical $CO_2$ (S-$CO_2$) Brayton cycle technology has a big potential to outperform the existing steam cycle and eventually replace it. The S-$CO_2$ cycle achieves high efficiency with very compact size, which is the ultimate advantage for a power cycle to have. The S-$CO_2$ cycle has a great potential not only for the future nuclear applications but also for general heat sources such as coal, natural gas, and concentrated solar. In this paper, a brief introduction to the S-$CO_2$ power cycle technologies will be first provided, and a short summary of current research and development status of the power cycle technology around the world will be followed. Especially the research works performed by KAIST, KAERI and several related research institutions in Korea will be reviewed in more detail, since they have recently developing a strong infrastructure to test these ideas by constructing a demonstration facility while producing many innovative ideas to improve and realize the concept.

Research on the Development of the Supercritical CO2 Dual Brayton Cycle (초임계 이산화탄소 이중 브레이튼 사이클 개발 연구)

  • Baik, Young-Jin;Na, Sun Ik;Cho, Junhyun;Shin, Hyung-Ki;Lee, Gilbong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.673-679
    • /
    • 2016
  • Because of the growing interest in supercritical carbon dioxide power cycle technology owing to its potential enhancement in compactness and efficiency, supercritical carbon dioxide cycles have been studied in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. This study introduces the current status of the research project on the supercritical carbon dioxide power cycle by Korea Institute of Energy Research (KIER). During the first phase of the project, the un-recuperated supercritical Brayton cycle test loop was built and tested. In phase two, researchers are designing and building a supercritical carbon dioxide dual Brayton cycle, which utilizes two turbines and two recuperators. Under the simulation condition considered in this study, it was confirmed that the design parameter has an optimal value for maximizing the net power in the supercritical carbon dioxide dual cycle.

Recent trends of supercritical CO2 Brayton cycle: Bibliometric analysis and research review

  • Yu, Aofang;Su, Wen;Lin, Xinxing;Zhou, Naijun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.699-714
    • /
    • 2021
  • Supercritical CO2 (S-CO2) Brayton cycle has been applied to various heat sources in recent decades, owing to the characteristics of compact structure and high efficiency. Understanding the research development in this emerging research field is crucial for future study. Thus, a bibliometric approach is employed to analyze the scientific publications of S-CO2 cycle field from 2000 to 2019. In Scopus database, there were totally 724 publications from 1378 authors and 543 institutes, which were distributed over 55 countries. Based on the software-BibExcel, these publications were analyzed from various aspects, such as major research areas, affiliations and keyword occurrence frequency. Furthermore, parameters such as citations, hot articles were also employed to evaluate the research output of productive countries, institutes and authors. The analysis showed that each paper has been cited 13.39 times averagely. United States was identified as the leading country in S-CO2 research followed by China and South Korea. Based on the contents of publications, existing researches on S-CO2 are briefly reviewed from the five aspects, namely application, cycle configurations and modeling, CO2-based mixtures, system components, and experiments. Future development is suggested to accelerate the commercialization of S-CO2 power system.