• Title/Summary/Keyword: Superconductor bulk

Search Result 110, Processing Time 0.022 seconds

Development of 3 T-class Large Area YBCO Superconductor Bulk Magnet (3 T급 대면적 YBCO 초전도 벌크자석 개발)

  • Han, S.C.;Jeong, S.Y.;Park, B.J.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.71-75
    • /
    • 2012
  • For the practical application of a YBCO superconductor bulk magnet, the superconductor bulk magnet with strong and stable magnetic field on a large area surface should be fabricated. To satisfy these requirements, we have designed a conduction-cooled bulk magnet system using six single grain YBCO bulk superconductors. Six rectangular-shaped YBCO bulk superconductors with a dimension of $38{\times}38{\times}15mm^3$ were field-cooled at 20 K using a superconductor magnet with maximum operating magnetic field of 4 T. The magnetic flux of 3.0 T and 2.8 T were achieved on the surface of bulk superconductors and over the vacuum chamber surface of the refrigerator, respectively.

Experimental Study on Magnetic Properties of YBCO Bulk Superconductor (YBCO Bulk 초전도체의 자화 특성에 관한 실험적 연구)

  • 강형구;나완수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.77-80
    • /
    • 1999
  • In this paper. We experimentally investigated the magnetic properties of YBCO bulk superconductor using AC magnetization method. The sample is 2.8cm wide in a diameter and 1.4cm long. We applied Ac magnetic field parallel to the direction of length of YBCO bulk. It is observed that YBCO bulk has the diamagnetic properties. AC loss calculation of YBCO bulk superconductor was performed by evaluating the total area of magnetization traces. As depends on the frequency and amplitude of the applied magnetic field.

  • PDF

Magnetic Force Properties of Superconducting Bulk (초전도 벌크의 자기적 특성을 위한 간편한 시스템)

  • Sang Heon Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.70-73
    • /
    • 2023
  • To improve superconductor properties, the size of the crystal grains of the superconductor should be adjusted, the amount of electricity flowing through the superconductor should be increased, and the superconductor should be designed to withstand external magnetic fields. It is necessary to control the microstructure so that many flux pinning centers are developed inside the superconductor so that defects are generated physically or chemically, and the micro secondary phase for trapped magnetic flux must be dispersed inside the superconductor. In order to measure the superconducting magnetic force of the superconducting bulk in a simplified manner, the superconducting magnetic force was analyzed using an Nd-Fe-B permanent magnet of 3.80 kG. In particular, by delaying the growth of partially melted Y2BaCuO5 particles, we devised a plan to refine Y2BaCuO5 particles to effectively improve superconducting magnetic force, and analyzed superconducting magnetic force in a single crystal YBa2Cu3O7-y superconducting bulk using a gauss meter. The melted superconducting bulk traps 80% or more of the applied magnetic field, and can be used as a bulk magnet of high magnetic field magnetization applicable to electric power equipment.

Frequency dependence of AC loss in YBCO Bulk superconductor (YBCO Bulk 초전도체 교류손실의 주파수 의존성)

  • Ye, Jung-Hee;Nah, Wan-Soo;Kim, Chan-Jong;Hong, Gye-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.259-261
    • /
    • 1999
  • In this paper, we investigated the frequency dependences of AC loss and the magnetic properties of a superconductor using magnetization method. We used the YBCO bulk superconductor sample which has a square-shaped cross sectional area of $6mm{\times}6mm$. and 43mm-long in axial direction. The applied AC magnetic field was parallel to the direction of sample axis. It is observed that YBCO bulk has the diamagnetic properties. AC loss calculation of YBCO bulk superconductor was performed by evaluating the total area of magnetization traces. We performed two cases of experiments, one for $B_m<B_p$ and the other for $B_m<B_p$. The experiments showed that the AC loss dependences on frequency were different in each mode, as was indicated in other publications.

  • PDF

Development of Large-sized YBCO High Temperature Superconductor Bulk Magnets and Actuator (대면적 YBCO 고온 초전도 벌크 자석 및 조작기 개발)

  • Han, Sang-Chul;Park, Byung-Jun;Jung, Se-Yong;Han, Young-Hee;Lee, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.450-455
    • /
    • 2015
  • For the practical application of a YBCO superconductor bulk, the superconductor bulk magnet with high magnetic field on a large area surface should be fabricated. To make this, YBCO single crystal bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed melt growth(TSMG) method with $YBa_2Cu_3O_x$, $Y_2O_3$, and $CeO_2$ mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the manufacturing process became simpler and more economical. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been observed, analyzed and measured. The different characteristic values of the several samples have been analyzed from the viewpoint of their microstructures. We have developed a $8{\times}12cm$ size superconductor bulk magnet, up to 3 T class, by using the 4 T class-high field superconducting magnetizer and confirmed the applicability of the transmission level circuit breakers by measuring the strength and speed of the superconductor bulk magnet actuator.

Direct fabrication of a large grain YBCO bulk superconductor without intermediate grinding step

  • Hong, Yi-Seul;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.27-31
    • /
    • 2019
  • Large grain YBCO bulk superconductors are fabricated by the top-seeded melt growth (TSMG) or top-seeded infiltration growth (TSIG) method. Both growth methods use at least one of $YBa_2Cu_3O_{7-{\delta}}$, $Y_2BaCuO_5$, $BaCuO_3$ pre-reacted precursor powders. However, the synthesis of the pre-reacted powders includes multiple calcination runs which are cost-bearing and time-consuming. In this work, we report the successful growth of single-domain YBCO bulk superconductors directly by using the powder compact that has been pressed from the mixture of $Y_2O_3$, $BaCuO_3$ and CuO powders without any intermediate grinding step. Single-domain YBCO bulk superconductor has been also prepared by using $Y_2O_3$, $BaO_2$ and CuO powders without intermediate grinding step. Investigations on the trapped magnetic field and microstructure of the melt-processed specimen show that the elimination of the repeated processes of calcinations and pulverization has hardly affected on the crystal growth and the magnetic properties of the grown YBCO bulk superconductors. However, it is thought that the presence of residual carbon affects on the size of Y211 particles in melt-processed YBCO bulk superconductor.

Fabrication of Bulk High-Tc Superconductor (벌크형 고온 초전도 합성)

  • Lee, Sang Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.333-336
    • /
    • 2021
  • Oxide YBCO bulk superconductors are manufactured using the melt process. Because seed crystal growth method utilizes a slow-spreading layer-by-layer reaction, a long-term heat treatment is required to manufacture a single-crystal specimen of several cm. In this study, the melt process method was applied to compensate for the shortcomings of the seed crystal growth method. The thickness of the upper and lower pellets of the YBCO bulk was molded to 40 mm, and YBCO superconductor was produced by heat treatment. The measurement results of capture magnetism was in line with the literature. This results in a relationship that the higher the growth of Y211 particle in the YBCO, the higher the superconducting properties. We analyzed the YBCO superconductor, focusing on the Y2BaCuO5 particle distribution.

Electromagnetic Properties of Bulk High-Tc Superconductor (벌크형 초전도체의 전기자기적 특성)

  • Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.111-114
    • /
    • 2017
  • In this research, the development of fabrication technique of bulk YBaCuO superconductors for application was studied. In fluence of $BaZrO_3$ addition on magnetization characteristics of thermal pyrolysis textured YBaCuO superconductor was investigated. Fine $BaZrO_3$ particle were dispersed within the textured YBaCuO matrix by means of the thermal pyrolysis processing. Magnetic levitation force for YBaCuO superconductors were obtained using Nd-B-Fe permanent magnet, at 77 K and at the magnetic field from 0 to 5.3 K gauss. In the unadded superconductor and 5 wt% $BaZrO_3$ addition, anomalous magnetization behavior, which is characterized by the intermediate magnetic field, was observed at 77 K. Critical current density was about few hundreds $A/cm^2$ and the magnetic characteristics increased slightly by addition of $BaZrO_3$ powder. Maximum magnetic force was obtained in the YBaCuO superconducting bulk with 3 wt.% $BaZrO_3$ addition.

Fabrication of a high magnetization YBCO bulk superconductor by a bottom-seeded melt growth method

  • Hong, Yi-Seul;Park, Soon-dong;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.19-23
    • /
    • 2019
  • A large grain YBCO bulk superconductor is fabricated by the top-seeded melt growth (TSMG) method. In the TSMG process, the seed crystal is placed on the top surface of a partially melted compact and therefore the seed crystal is frequently tilted during the melt process due to intrinsic unstable nature of Y211 particle +liquid phase mixture. In this work, we report the successful growth of single-domain YBCO bulk superconductors by a bottom-seeded melt growth (BSMG) method. Investigations on the trapped magnetic field and the microstructures of the synthesized specimens show that a bottom-seeded melt growth method has hardly affected on the crystal growth behavior, the microstructure development and the magnetic properties of the large grain YBCO bulk superconductors. The bottom-seeded melt growth method is clearly beneficial for the stable control of seed orientation through the melt process for the fabrication of a large grain YBCO bulk superconductor.