• Title/Summary/Keyword: Superconducting HGMS

Search Result 31, Processing Time 0.022 seconds

Recent development of high gradient superconducting magnetic separator for kaolin in china

  • Zhu, Zian;Wang, Meifen;Ning, Feipeng;Yang, Huan;Li, Peiyong;Zhang, Yiting;Wang, Zhaolian;Zhang, Guoqing;Hou, Zhilong;Liu, Zhongxiu;Dai, Zhong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.5-8
    • /
    • 2017
  • A series of high gradient superconducting magnetic separator (HGMS) for kaolin has been developed. It is used for processing kaolin to increase the brightness or whiteness whether it is for paper or ceramic applications. The HGMS system mainly consists of a solenoid magnet with a zero boil-off helium cryostat, a double reciprocating canisters system, and a PLC (Process Logic Controller) fully automatic control system based on SCADA (Supervisory Control and Data Acquisition) system. We have successfully developed CGC-5.5/300 and CGC-5.0/500 HGMS systems in the recent years, and now three sets of them are on-site operation in different customers. This paper will present recent progress of the HGMS system, the results of some experiments on processing kaolin clay used HGMS, and the on-site operation.

Study on the Purification of Wastewater by Superconducting HGMS for Steelmaking Industry (제철 폐수의 고구배 자기분리HGMS(High Gradient Magnetic Seperation) 처리에 관한 연구)

  • Kim, Tae-Hyung;Ha, Dong-Woo;Oh, Sang-Soo;Ha, Tae-Wook;Kim, Young-Hun;Kang, Chae-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.360-360
    • /
    • 2008
  • Steelmaking industry is widely known to use a lot of water and same amount of wastewater is generated. Although toxicity of wastewater from Steelmaking industry is low, it contains an amount of various organic materials and Fe-Oxides. It is important to recycle the wastewater because of water shortages and water pollution. In general, large-scale equipment is necessary to process the wastewater. On the other hand, superconducting high gradient magnetic separation (HGMS) system can process the wastewater in the small space. Superconducting HGMS system that had a purpose to purify the wastewater was assembled. Cryo-cooled Nb-Ti superconducting magnet was used for magnetic separator. This system can operate continuously because contaminated filters can keep on returning after cleaning. The various magnetic seeding reactions were investigated to increase the reactivity of coagulation. Filter cleaning system was developed to decrease the quantity of clean water. This research was supported by a grant from Korea Electrotechnology Research Institute, Republic of Korea.

  • PDF

Treatment of steelmaking process waste water by superconductor HGMS method (초전도 HGMS법에 의한 제철공정 폐수처리)

  • Kim Tae-Hyung;Ha Dong-Woo;Oh Sang-Soo;Ha Hong-Soo;Park Sung-Kook;Lee Sang-Gil;Noh Yu-Mi
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.41-44
    • /
    • 2006
  • This study introduced waste water treatment method by superconducting HGMS(High Gradient Magnetic Separation). HGMS treatment method is high efficient method for various waste water, we have surveyed superconducting magnetic separation technology. We fabricated the prototypes of magnetic matrix filter consisting of stainless steel mesh, which is a core component in the magnetic separation system. In our basic preliminary experiment using HGMS, it was made clear that the fine para-magnetic particles in the wasted water obtained from steelmaking process of POSCO can be separated with high efficiency.

Application of Superconducting Magnetic Separation for Condenser Water Treatment in Thermal Power Plant

  • Lee, You-Jin;Kwon, Jun-Mo;Baik, Seung-Kyu;Han, Kwang-Soo;Ko, Rock-Kil;Sohn, Myung-Hwan;Ha, Dong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.21-24
    • /
    • 2011
  • Superconducting high gradient magnetic separation (HGMS) has advantages to treat wastewater because it can generate high magnetic field and achieve rapid purification. In this study superconducting HGMS was applied to remove impurities from the condenser water in thermal power plant. The condenser water contained mainly hematite and maghemite and it was highly magnetized than hematite. In the HGMS tests using a 6-T cryo-cooled Nb-Ti superconducting magnet, the turbidity of the condenser water was effectively reduced up to 99.6% and the result showed better performance than that of the 0.5-T permanent magnet test. The higher magnetic field was applied in the range of 1-6T, the more iron oxides were removed. The effect of magnetic filter configuration on the condenser water treatment was also investigated. Consequently superconducting HGMS system can be applicable to remove iron oxide impurities from condenser water in thermal power plant.

Study on Magnetic Separation of Hot Roller coolant by Using Superconducting HGMS (초전도 HGMS를 이용한 열연 냉각수의 자기분리 연구)

  • Ha, Dong-Woo;Kim, Tae-Hyung;Oh, Sang-Soo;Park, Sung-Kook;Lee, Sang-Gil;Roh, Yu-Mi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.37-38
    • /
    • 2007
  • It needs several large reservoirs and long time to remove suspended solid like steel fines and iron oxide in hot rolling coolant. If removing rate of suspended solid in rolling coolant is improved by using high gradient magnetic separation (HGMS) system, the productivity of working process can be increased and the area of reservoir can be reduced. Pre-treatment process that react magnetic floc with inorganic and organic flocculant in coolant was studied. Horizontal type superconducting HGMS system was manufactured successfully, which was constituted with automatic filter transportation apparatus, 6 T He-free superconducting magnet system and water circulation system. The solid suspension removal ratio in hot rolling coolant was increased by flocculation with inorganic and organic flocculant.

  • PDF

Removal of sulfur element from high-sulfur coal by superconducting HGMS technology

  • Han, Shuai-shuai;Li, Su-qin;Yang, Rui-ming;Yang, Chang-qiao;Xing, Yi
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.26-30
    • /
    • 2019
  • Coal is the most abundant fossil fuel on Earth and is used in a wide range of applications. The direct combustion of high-sulfur coal produces a large amount of sulfur dioxide, which is a toxic and corrosive gas. A new superconducting high gradient magnetic separation (HGMS) technology was studied to remove sulfur from high sulfur coal. The magnetic separation concentrate was obtained under the optimum parameters, such as a particle size of -200 mesh, a magnetic field strength of 2.0 T, a slurry concentration of 15 g/L, and a slurry flow rate of 600 ml/min. The removal rate of sulfur is up to 59.9%. The method uses a magnetic field to remove sulfur-containing magnetic material from a pulverized coal solution. It is simple process with, high efficiency, and is a new way.

Development of superconducting high gradient magnetic separation system for scale removal from feed-water in thermal power plant

  • Shibatani, Saori;Nakanishi, Motohiro;Mizuno, Nobumi;Mishima, Fumihito;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Maeda, Tatsumi;Shigemoto, Naoya;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.19-22
    • /
    • 2016
  • A Superconducting High Gradient Magnetic Separation (HGMS) system is proposed for treatment of feed-water in thermal power plant [1]. This is a method to remove the iron scale from feed-water utilizing magnetic force. One of the issues for practical use of HGMS system is to extend continuous operation period. In this study, we designed the magnetic filters by particle trajectory simulation and HGMS experiments in order to solve this problem. As a result, the quantity of magnetite captured by each filter was equalized and filter blockage was prevented. A design method of the magnetic filter was proposed which is suitable for the long-term continuous scale removal in the feed-water system of the thermal power plant.

Removal of iron scale from feed-water in thermal power plant by magnetic separation - Introduction to chemical cleaning line -

  • Yamamoto, Junya;Mori, Tatsuya;Hiramatsu, Mami;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijim, Sigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.6-10
    • /
    • 2018
  • Removal of iron oxide scale from feed-water in thermal power plant can improve power generation efficiency. We have proposed a novel scale removal system utilizing High Gradient Magnetic Separation (HGMS). This system can be applied to high temperature and pressure area. We have conducted the lab-scale model experiments using ${\varphi}50mm$ filters and it demonstrated high removal efficiency in HGMS, but scale-up of the system is required toward practical use. In this study, we conducted a large scale mock-up HGMS experiment. We used the superconducting solenoidal magnet with ${\varphi}400mm$ bore and demonstrated that our HGMS system can achieve sufficient scale removal capacity that is required to introduce into both off-line and on-line system.

Treatment of Rolled Steel Coolant Wastewater by Superconducting High Gradient Magnetic Separation

  • Kim, Tea-Hyung;Ha, Dong-Woo;Oh, Sang-Soo;Kim, Ho-Sup;Ko, Rock-Kil;Lee, Nam-Jin;Kwon, Jun-Mo;Kim, Young-Hun;Kung, Chae-Hun;Ha, Tae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.354-354
    • /
    • 2009
  • We have developed the prototypes of superconducting magnetic separation system with high temperature superconductor wire. This separation filter system consist of magnetized matrix SUS430 wire and acrylic frame. This study introduced rolled steel process coolant wastewater applied superconductor HGMS(High Gradient Magnetic Separation). HGMS treatment have acted high efficient method for various wastewater. We have surveyed superconducting magnetic separation technology and reviewed the status of related industries using applied superconductivity. In our basic preliminary experiment using HGMS, it was made clear that the fine para-magnetic particles in the wastewater obtained from rolling process of steel can be separated with high efficiency. We investigated the ability of magnetic flock formation, which used inorganic materials and polymer coagulants. We had a purpose to remove SS of coolant at steel factory. Maximum coagulation remove rate of SS 98%. Removing ratio of $Fe_3O_4$ fine particles in wastewater showed over than 99% in the wastewater containing magnetic fines after four times of repetition of separation.

  • PDF

Investigation on purification of α-Fe2O3 from zinc smelting iron slag by superconducting HGMS technology

  • Zhang, Peng;Li, Su-qin;Guo, Zi-jie;Zhang, Chang-quan;Yang, Chang-qiao;Han, Shuai-shuai
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.16-19
    • /
    • 2018
  • Comprehensive utilization of zinc smelting iron slag not only solves environmental problems but also creates huge economic benefits. This study was conducted on the enrichment and recovery of ${\alpha}-Fe_2O_3$ from zinc smelting iron slag by superconducting HGMS technology. Several variables such as slurry flow velocity, slag concentration, magnetic field intensity and the amount of dispersing agent were tested in magnetic separation. In the experiments, obtained optimal magnetic separation parameters were 1.60 T of magnetic flux intensity, 600 mL/min of slurry flow velocity of, 15 g/L of slag concentration of, 0.10 g/L of dispersing agent. Under this condition, the content of ${\alpha}-Fe_2O_3$ was increased from 86.22% to 94.39% that can approach the Chinese national standard requirements (A level) of iron oxide red. It was concluded that using superconducting HGMS technology was an effective method for the purification of ${\alpha}-Fe_2O_3$ from zinc smelting iron slag.