• Title/Summary/Keyword: Supercavitating flows

Search Result 13, Processing Time 0.022 seconds

Numerical analysis for supercavitating flows around axisymmetric cavitators

  • Kwack, Young Kyun;Ko, Sung Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.325-332
    • /
    • 2013
  • Diffuse interface model for numerical analysis was used to compute supercavitating flows around various cavitators. The ambient pressures of 2 atm permitted cavitation studies in a range of cavitation number, ${\sigma}=0.1$ to 1.0 on selected conical and disk-headed cavitors. The computed results were compared with relation by Reichardt. Drag coefficient obtained from pressure forces acting on the cavitator also compared well with those obtained from analytical relations.

Numerical Analysis of Supercavitating Flows of Two-Dimensional Simple Bodies (2차원 단순 물체의 초공동 유동에 대한 수치해석)

  • Lee, Hyun-Bae;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.436-449
    • /
    • 2013
  • In this paper, a numerical analysis is carried out to study the characteristics of supercavitating flows and the drag of relatively simple two-dimensional and axisymmetric bodies which can be used for supercavity generation device, cavitator, of a high-speed underwater vehicle. In order to investigate the suitability of numerical models, cavity flows around the hemispherical head form and two-dimensional wedge are calculated with combinations of three turbulence models(standard $k-{\epsilon}$, realizable $k-{\epsilon}$, Reynolds stress) and two cavitation models(Schnerr-Sauer, Zwart-Gerber-Belamri). From the results, it is confirmed that the calculated cavity flow is more affected by the turbulence model than the cavitation model. For the calculation of steady state cavity flows, the convergence in case of the realizable $k-{\epsilon}$ model is better than the other turbulence models. The numerical result of the Schnerr-Sauer cavitation model is changed less by turbulence model and more robust than the Zwart-Gerber-Belamri model. Thus the realizable $k-{\epsilon}$ turbulence model and the Schnerr-Sauer cavitation model are applied to calculate supercavitating flows around disks, two dimensional $10^{\circ}$ and $30^{\circ}$ wedges. In case of the disk, the cavitation number dependences of the cavity size and the drag coefficient predicted are similar to either experimental data or Reichardt's semi-empirical equations, but the drag coefficient is overestimated about 3% higher than the Reichardt's equation. In case of the wedges, the cavitation number dependences of the cavity size are similar to experimental data and Newman's linear theory, and the agreement of the cavity length predicted and Newman's linear theory becomes better as decreasing cavitation number. However, the drag coefficients of wedges agree more with experimental data than those of Newman's analytic solution. The cavitation number dependences of the drag coefficients of both the disk and the wedge appear linear and simple formula for estimating the drag of supercavitating disks and wedges are suggested. Consequently, the CFD scheme of this study can be applied for numerical analysis of supercavitating flows of the cavitator and the cavitator design.

Numerical Analysis of the Drag of Conical Cavitators (원뿔 캐비테이터의 항력에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae;Cho, Jung-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.305-314
    • /
    • 2015
  • In this paper, a numerical analysis is carried out to study the drag of conical cavitators, supercavity generation devices for the high-speed underwater vehicle. The realizable k-∊ turbulence model and the Schnerr-Sauer cavitation model are applied to calculate steady-state supercavitating flows around cones of various cone angles. The calculated drags of the cones are decomposed of the pressure and the friction parts and their dependency on the geometry and the flow conditions have been analyzed. It is confirmed that the pressure drag coefficients of the cones can be estimated by a simple function of both the cone angle and the cavitation number while the friction drag coefficients approximately by well-known empirical formulas, e.g., Schults-Grunow's for the drag of the flat plate. Finally a practical method for estimating the total drags of supercavitating cones is suggested, which can be useful consequently for the design of conical cavitaors.

Experimental investigation of supercavitating flows

  • Ahn, Byoung-Kwon;Lee, Tae-Kwon;Kim, Hyoung-Tae;Lee, Chang-Sup
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.123-131
    • /
    • 2012
  • When the object is traveling in the water at tremendously high speeds, the cavity forms and grows up at a fore part of the object called cavitator, and the object is eventually enveloped by vaporized water, supercavitation. As a result, the only part of the object in direct contact with the water is the cavitator, so skin-friction drag is significantly reduced. This is why recently supercavitating objects have been interested in many applicable fields. In this study we are focused out attention on supercavitating flows around various shapes of two and three dimensional cavitators. First, general features of supercavitation are examined by analyzing results obtained by the previously developed numerical method. Second, experimental observations are carried out at a cavitation tunnel at the Chungnam National University (CNU CT), and supercavity dimensions are scrutinized.

A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow (2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

A Numerical Analysis of the Supercavitating Flow around Three-Dimensional Axisymmetric Cavitators (3차원 축대칭 캐비테이터의 초월공동유동 수치해석)

  • Kim, Ji-Hye;Jang, Hyun-Gill;Ahn, Byoung-Kwon;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • Recently submerged objects moving at high speed such as a supercavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study, we are focusing our attention on supercavitating flows around axisymmetric cavitators; a numerical method based on inviscid flow is developed and predicted supercavities around several shapes of 2D and 3D cavitators are presented. The results are validated by comparison of existing theoretical and empirical results. In addition, characteristic features of supercavity shapes and drag forces acting on a real scale torpedo are evaluated according to practically appropriate operating conditions.

Numerical Analysis of Axisymmetric Supercavitating Underwater Vehicle with the Variation of Shape Parameters (축대칭 수중 운동체의 형상 변화를 고려한 초월공동 수치해석)

  • Park, Hyun-Ji;Kim, Ji-Hye;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.482-489
    • /
    • 2018
  • Most of the numerical and experimental studies on supercavitating flows are focused on the cavitator only. However, the partial cavity growing into the supercavity is affected by the shape of the body placed behind the cavitator. In this paper, we develope a numerical method which is based on the boundary element method to predict supercavitating flow around three-dimensional axisymmetric bodies. We estimate the influence of the body shape on the supercavity growth. Here, we consider various parameters of the body such as cavitator shape, shoulder length and body diameter, and compare the results with the case of the cavitator only. In summary, it is found that the body may impede the cavity growth, the shoulder mainly affects the cavity length, and the supercavity occurring in the cone type cavitator is strongly influenced rather than that of the disk type cavitator.

Experimental Investigation of Artificial Supercavitation under Periodic Gust Flows (주기적으로 거동하는 유동장의 인공 초월공동에 대한 실험연구)

  • Jeong, So-Won;Park, Sang-Tae;Ahn, Byoung-Kwon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.188-194
    • /
    • 2018
  • Recently a supercavitating underwater vehicle moving at high speed over 200 knots has been of interest for its practical advantage of the dramatic drag reduction. Many experimental and numerical studies have been explored, however most of the studies deal with the case of uniform flows. In this paper, we investigated physical behaviors of the artificial supercavity in a periodic gust flow. Experiments were carried out at a cavitation tunnel of the Chungnam National University(CNUCT), which is equipped to remove the gas supplied from outside of the tunnel. We devised an experimental apparatus generating vertical and horizontal gust flows, and investigated the supercavity formations at different periodic mode of the incoming flow.

Numerical Analysis of Supercavitating Flows Based on Viscous/Inviscid Method (점성 및 비점성 해석법을 이용한 초월공동 유동 수치해석)

  • Ahn, Byoung-Kwon;Kim, Ji-Hye;Choi, Jung-Kyu;Kim, Hyoung-Tae;Nah, Young-In;Lee, Do-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Recently supercavitating torpedo has been studied because of its high-speed performance as the next generation of underwater weapon systems. In this study, we present a numerical method based on the potential flow. Characteristic features of the shape of supercavities and drag forces are investigated. In addition, we introduce a viscous-potential method to compensate for the effects of viscosity. The results are compared with viscous calculations using a commercial package, FLUENT V13.

An Estimation of the Size of Supercavities for Conical Cavitators (원뿔 캐비테이터의 초공동 크기 추정)

  • Kim, Hyoung-Tae;Kim, Byeung-jin;Choi, Jung-Kyu;Yoon, Hyun-Gull
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.92-100
    • /
    • 2016
  • A comparative method is applied to evaluate well-known formulas for estimating the size of supercavities of axisymmetric cavitators for the supercavitating underwater vehicle. Basic functional forms of these formulas are derived first for the cavity diameter from a momentum integral estimate and second for the cavity length from an asymptotic analysis of inviscid supercavity flows. The length and the diameter of axisymmetric supercavities estimated by each formula are compared, with available experimental data for a disk and a 45° conical cavitators, and also with computational results obtained by a CFD code, ‘fluent’, for conical cavitators of wide range of cone angles. Results for estimating the length and the diameter of the supercavities show in general a good agreement, which confirms the size of the supercavities for disk and conical cavitators can be estimated accurately by these simple formulas of an elementary function of cavitation number and drag coefficient of the cavitator. These formulas will be useful for from conceptual design of the cavitator to real-time control of the supercavitating underwater vehicle.