• Title/Summary/Keyword: Super-resolution

Search Result 440, Processing Time 0.023 seconds

Applying deep learning based super-resolution technique for high-resolution urban flood analysis (고해상도 도시 침수 해석을 위한 딥러닝 기반 초해상화 기술 적용)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Kim, Minyoung;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.641-653
    • /
    • 2023
  • As climate change and urbanization are causing unprecedented natural disasters in urban areas, it is crucial to have urban flood predictions with high fidelity and accuracy. However, conventional physically- and deep learning-based urban flood modeling methods have limitations that require a lot of computer resources or data for high-resolution flooding analysis. In this study, we propose and implement a method for improving the spatial resolution of urban flood analysis using a deep learning based super-resolution technique. The proposed approach converts low-resolution flood maps by physically based modeling into the high-resolution using a super-resolution deep learning model trained by high-resolution modeling data. When applied to two cases of retrospective flood analysis at part of City of Portland, Oregon, U.S., the results of the 4-m resolution physical simulation were successfully converted into 1-m resolution flood maps through super-resolution. High structural similarity between the super-solution image and the high-resolution original was found. The results show promising image quality loss within an acceptable limit of 22.80 dB (PSNR) and 0.73 (SSIM). The proposed super-resolution method can provide efficient model training with a limited number of flood scenarios, significantly reducing data acquisition efforts and computational costs.

An Image Processing Speed Enhancement in a Multi-Frame Super Resolution Algorithm by a CUDA Method (CUDA를 이용한 초해상도 기법의 영상처리 속도개선 방법)

  • Kim, Mi-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.663-668
    • /
    • 2011
  • Although multi-frame super resolution algorithm has many merits but it demands too much calculation time. Researches have shown that image processing time can be reduced using a CUDA(Compute unified device architecture) which is one of GPGPU(General purpose computing on graphics processing unit) models. In this paper, we show that the processing time of multi-frame super resolution algorithm can be reduced by employing the CUDA. It was applied not to the whole parts but to the largest time consuming parts of the program. The simulation result shows that using a CUDA can reduce an operation time dramatically. Therefore it can be possible that multi-frame super resolution algorithm is implemented in real time by using libraries of image processing algorithms which are made by a CUDA.

SELF-TRAINING SUPER-RESOLUTION

  • Do, Rock-Hun;Kweon, In-So
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.355-359
    • /
    • 2009
  • In this paper, we describe self-training super-resolution. Our approach is based on example based algorithms. Example based algorithms need training images, and selection of those changes the result of the algorithm. Consequently it is important to choose training images. We propose self-training based super-resolution algorithm which use an input image itself as a training image. It seems like other example based super-resolution methods, but we consider training phase as the step to collect primitive information of the input image. And some artifacts along the edge are visible in applying example based algorithms. We reduce those artifacts giving weights in consideration of the edge direction. We demonstrate the performance of our approach is reasonable several synthetic images and real images.

  • PDF

A Study on Super Resolution Image Reconstruction for Acquired Images from Naval Combat System using Generative Adversarial Networks (생성적 적대 신경망을 이용한 함정전투체계 획득 영상의 초고해상도 영상 복원 연구)

  • Kim, Dongyoung
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1197-1205
    • /
    • 2018
  • In this paper, we perform Single Image Super Resolution(SISR) for acquired images of EOTS or IRST from naval combat system. In order to conduct super resolution, we use Generative Adversarial Networks(GANs), which consists of a generative model to create a super-resolution image from the given low-resolution image and a discriminative model to determine whether the generated super-resolution image is qualified as a high-resolution image by adjusting various learning parameters. The learning parameters consist of a crop size of input image, the depth of sub-pixel layer, and the types of training images. Regarding evaluation method, we apply not only general image quality metrics, but feature descriptor methods. As a result, a larger crop size, a deeper sub-pixel layer, and high-resolution training images yield good performance.

An ESPRIT-Based Super-Resolution Time Delay Estimation Algorithm for Real-Time Locating Systems (실시간 위치 추적 시스템을 위한 ESPRIT 기반의 초 분해능 지연 시간 추정 알고리즘)

  • Shin, Joon-Ho;Park, Hyung-Rae;Chang, Eun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.310-317
    • /
    • 2013
  • In this paper an ESPRIT-based super-resolution time delay estimation algorithm is developed for real-time locating system (RTLS) and its performance is analyzed in various multipath environments. The performance of the existing correlation method for time delay estimation seriously degrades in multipath environments where the relative time delays of multipath signals are less than a PN chip. To solve the problem we shall develop a frequency domain super-resolution time delay estimation algorithm using the ESPRIT, the most representative super-resolution direction-of-arrival (DOA) estimation algorithm, and analyze its performance in various multipath environments.

A Comparative Study on OCR using Super-Resolution for Small Fonts

  • Cho, Wooyeong;Kwon, Juwon;Kwon, Soonchu;Yoo, Jisang
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.95-101
    • /
    • 2019
  • Recently, there have been many issues related to text recognition using Tesseract. One of these issues is that the text recognition accuracy is significantly lower for smaller fonts. Tesseract extracts text by creating an outline with direction in the image. By searching the Tesseract database, template matching with characters with similar feature points is used to select the character with the lowest error. Because of the poor text extraction, the recognition accuracy is lowerd. In this paper, we compared text recognition accuracy after applying various super-resolution methods to smaller text images and experimented with how the recognition accuracy varies for various image size. In order to recognize small Korean text images, we have used super-resolution algorithms based on deep learning models such as SRCNN, ESRCNN, DSRCNN, and DCSCN. The dataset for training and testing consisted of Korean-based scanned images. The images was resized from 0.5 times to 0.8 times with 12pt font size. The experiment was performed on x0.5 resized images, and the experimental result showed that DCSCN super-resolution is the most efficient method to reduce precision error rate by 7.8%, and reduce the recall error rate by 8.4%. The experimental results have demonstrated that the accuracy of text recognition for smaller Korean fonts can be improved by adding super-resolution methods to the OCR preprocessing module.

Increasing Spatial Resolution of Remotely Sensed Image using HNN Super-resolution Mapping Combined with a Forward Model

  • Minh, Nguyen Quang;Huong, Nguyen Thi Thu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.559-565
    • /
    • 2013
  • Spatial resolution of land covers from remotely sensed images can be increased using super-resolution mapping techniques for soft-classified land cover proportions. A further development of super-resolution mapping technique is downscaling the original remotely sensed image using super-resolution mapping techniques with a forward model. In this paper, the model for increasing spatial resolution of remote sensing multispectral image is tested with real SPOT 5 imagery at 10m spatial resolution for an area in Bac Giang Province, Vietnam in order to evaluate the feasibility of application of this model to the real imagery. The soft-classified land cover proportions obtained using a fuzzy c-means classification are then used as input data for a Hopfield neural network (HNN) to predict the multispectral images at sub-pixel spatial resolution. The 10m SPOT multispectral image was improved to 5m, 3,3m and 2.5m and compared with SPOT Panchromatic image at 2.5m resolution for assessment.Visually, the resulted image is compared with a SPOT 5 panchromatic image acquired at the same time with the multispectral data. The predicted image is apparently sharper than the original coarse spatial resolution image.

A Breakthrough in Sensing and Measurement Technologies: Compressed Sensing and Super-Resolution for Geophysical Exploration (센싱 및 계측 기술에서의 혁신: 지구물리 탐사를 위한 압축센싱 및 초고해상도 기술)

  • Kong, Seung-Hyun;Han, Seung-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.335-341
    • /
    • 2011
  • Most sensing and instrumentation systems should have very higher sampling rate than required data rate not to miss important information. This means that the system can be inefficient in some cases. This paper introduces two new research areas about information acquisition with high accuracy from less number of sampled data. One is Compressed Sensing technology (which obtains original information with as little samples as possible) and the other is Super-Resolution technology (which gains very high-resolution information from restrictively sampled data). This paper explains fundamental theories and reconstruction algorithms of compressed sensing technology and describes several applications to geophysical exploration. In addition, this paper explains the fundamentals of super-resolution technology and introduces recent research results and its applications, e.g. FRI (Finite Rate of Innovation) and LIMS (Least-squares based Iterative Multipath Super-resolution). In conclusion, this paper discusses how these technologies can be used in geophysical exploration systems.

Super Resolution using Dictionary Data Mapping Method based on Loss Area Analysis (손실 영역 분석 기반의 학습데이터 매핑 기법을 이용한 초해상도 연구)

  • Han, Hyun-Ho;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.19-26
    • /
    • 2020
  • In this paper, we propose a method to analyze the loss region of the dictionary-based super resolution result learned for image quality improvement and to map the learning data according to the analyzed loss region. In the conventional learned dictionary-based method, a result different from the feature configuration of the input image may be generated according to the learning image, and an unintended artifact may occur. The proposed method estimate loss information of low resolution images by analyzing the reconstructed contents to reduce inconsistent feature composition and unintended artifacts in the example-based super resolution process. By mapping the training data according to the final interpolation feature map, which improves the noise and pixel imbalance of the estimated loss information using a Gaussian-based kernel, it generates super resolution with improved noise, artifacts, and staircase compared to the existing super resolution. For the evaluation, the results of the existing super resolution generation algorithms and the proposed method are compared with the high-definition image, which is 4% better in the PSNR (Peak Signal to Noise Ratio) and 3% in the SSIM (Structural SIMilarity Index).

Image Super-Resolution for Improving Object Recognition Accuracy (객체 인식 정확도 개선을 위한 이미지 초해상도 기술)

  • Lee, Sung-Jin;Kim, Tae-Jun;Lee, Chung-Heon;Yoo, Seok Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.774-784
    • /
    • 2021
  • The object detection and recognition process is a very important task in the field of computer vision, and related research is actively being conducted. However, in the actual object recognition process, the recognition accuracy is often degraded due to the resolution mismatch between the training image data and the test image data. To solve this problem, in this paper, we designed and developed an integrated object recognition and super-resolution framework by proposing an image super-resolution technique to improve object recognition accuracy. In detail, 11,231 license plate training images were built by ourselves through web-crawling and artificial-data-generation, and the image super-resolution artificial neural network was trained by defining an objective function to be robust to the image flip. To verify the performance of the proposed algorithm, we experimented with the trained image super-resolution and recognition on 1,999 test images, and it was confirmed that the proposed super-resolution technique has the effect of improving the accuracy of character recognition.