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ABSTRACT 
 
In this paper, we describe self-training super-resolution. 
Our approach is based on example based algorithms. 
Example based algorithms need training images, and 
selection of those changes the result of the algorithm. 
Consequently it is important to choose training images. We 
propose self-training based super-resolution algorithm 
which use an input image itself as a training image. It 
seems like other example based super-resolution methods, 
but we consider training phase as the step to collect 
primitive information of the input image. And some 
artifacts along the edge are visible in applying example 
based algorithms. We reduce those artifacts giving weights 
in consideration of the edge direction. We demonstrate the 
performance of our approach is reasonable several 
synthetic images and real images. 
. 
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1. INTRODUCTION 
 
Resolution of a digital image is limited by optical 
characteristics and interference of CCD elements. Recently 
lots of researches called super-resolution, which try to 
overcome the limitation in software level, have been 
proposed. Super-resolution technique is mainly categorized 
into two methods. 
 
First one is reconstruction based super-resolution. This 
mainly uses multiple low resolution images and combines 
those all together. Irani et al. [1] defined transformation 
from low resolution to high resolution as forward 
projection and from high resolution to low resolution as 
backprojection and produced high resolution image 
iteratively with bi-directional projections. Shechtman et al. 
[2] considered both of spatial and temporal axis and 
super-resolution is performed simultaneously in time and 
space. Ben-Ezra et al. [7] developed a jitter camera to 
move camera in pre-defined amount of subpixel which is 
necessary for combining low resolution images. 
 
The other is example based super-resolution which is first 
introduced by Freeman et al. [3]. This uses relationship 
between low resolution image patch and high resolution 
image patch and applies it onto low resolution input image 
patches. Sun et al. [4] extracted patch pairs of low 
resolution and high resolution on primitive parts such as 

edges, corner, T-junction, and etc. to reduce error due to 
mismatches of low and high resolution patches. Kong et al. 
[5] effectively obtained high resolution videos using high 
resolution images which are regularly taken during 
capturing low resolution video and Chang et al. [8] used 
locally linear embedding on smoothness constraint. 
Method for training not for intensity of patches but for 
point spread function on patches was proposed [6].  
 
Although example based super-resolution are arguably 
considered to generate the best results, there are some 
limitations. The result of example based super-resolution is 
highly dependent on training images. If acutance of an 
input image is totally different from that of training images, 
result images become unnatural. Fig.1 shows how training 
images have a great effect on the result image. (e) and (f)  
are super-resolved from (a) using training image (b) and (c), 
respectively. Even though (e) is reconstructed from180,000 
patches of (b), it has more visible artifacts in the ellipse 
compared with (f) which is generated from only 5,000 
patches of (c). And enormous amount of memory space is 
required and it consequently takes long time. 
 
 

 
 (a) 

  
         (b)               (c) 

 
                (e)             (f) 

Fig.1: Effect of training images. 
(a) is input low resolution image. (e) are super-resolved 
from 180,000 training patches of (b) and (f) are 
super-resolved from about 5,000 training patches of (c). 
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Our approach is motivated by recent progress [5, 9] which 
show great performance from low resolution videos and 
images using images which are very similar to the input 
low resolution image. In [9], one of low resolution stereo 
image is high-resolved from the other high resolution 
stereo image. And in [5], high resolution videos are 
obtained using high resolution images which are regularly 
taken during capturing low resolution video. In both of two 
papers images, which have similar primitives with an input 
low resolution image-video consists of sequence of low 
resolution images-, are used as training images.  
 
In the rest of this paper, In Section 2, we describe details of 
self-training based super-resolution and in Section 3 
validity in terms of ROC curve is described. Experimental 
results shown in Section 4 demonstrate that our approach 
effectively and efficiently reconstruct high resolution 
image with a small number of training patches. In Section 
we conclude. 
 

2. DETAILS OF SELF-TRAINING 
    

Fig. 2 shows outline of our approach. Proposed scheme 
consists of two steps. First input IL is trained from itself. 
Input low resolution image IL is filtered through Gaussian 
smoothing and down-sampled and up-sampled using 
simple interpolation.  
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where Ismooth is a filtered image, G is Gaussian function, 
and (x,y) is relative distance to (i,j) pixel. Then we obtain 
the image of same size of an input image but degraded in 
acutance. Super-resolved image   is the solution for MAP 
(Maximum A Posterior) problem [4]. 
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where       denotes up-sampling and down-sampling by 
the factor of s, respectively. 
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Since our region of interest (ROI) lies along the primitives, 
if we know about information on edge of an input image  , 
the edge can replace our goal image   . (2) can be 
represented by each edge line Ck –continuously-linked 
edge- on the edge C.  
2.1 Training Phase 
 
Overview of training phase is shown in Fig. 2.In the 
training phase, edge prior on an input image is extracted.  

 

 
Fig. 2: Outline of self-training super-resolution 

 
As mentioned previously, a low resolution input image 
passes Gaussian filter to remove aliasing artifact resulting 
from down-sampling without smoothing. Note that degree 
of smoothing is practically very important. Finding best 
matches fails unless variance of Gaussian is appropriate. 
After down-sampling and up-sampling a degraded image 
has same size with the input image but it lost acutance. We 
extract primitive (patch) pairs on both of the degraded 
image and difference between input and degraded images, 
containing high frequency details, on which edge of the 
input image extracted. Since neighboring patches have 
overlapping region to give smoothness constraint on 
neighboring patches, extraction intervals of patch pairs 
have to be less than patch size. In Fig.2 Bl and Bh denotes 
primitive on the input image and difference image 
respectively. Since mean and variance of Bl are extremely 
various, by doing normalization we remove mean and 
variance. 

    

l ll

l

l l l

l l l

BB
c

B E B

c E B E B

μ

μ

−
=

⎡ ⎤= − ⎣ ⎦
⎡ ⎤⎡ ⎤= − ⎣ ⎦⎣ ⎦

  (5) 

 
2.2 Synthesis Phase 
 
Basic structure for synthesis phase is shown in Fig. 2. IL is 
up-sampled by magnification of s in (3) (   ) . After edge 
extraction for   , we make nodes on the each edge. And 
find K best matching low resolution patches using SSD 
(Sum of Squared Difference), in which optimal solution set 
is computed, in training data set. Since       is constant, 
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In graph model represented as          , V is vertex and 
E is edge. n is index for node which is conceptual 
consideration of a patch, Eone denotes evidence function on 
a node, Etwo denotes compatibility function between two 
adjacent nodes. This energy function can be optimized 
using dynamic programming [11], belief propagation (BP) 
[10], and etc. In next sub-section concept of BP are briefly 
introduced. 
 
2.3 Belief Propagation 
 
Key idea for Belief Propagation (BP) is to update messages 
iteratively. After selecting K best matches, we should 
compute the sequence of optimal patch indices.        in 
(6) is almost constant, because in selecting K best matches 
we already found the patches which has smallest SSD.  
 
           can be computed in the overlapping region 
between adjacent patches as shown in Fig. 3. Energy is 
computed only in the dark rectangle. Then we can make 
random vector (x1,…,xM) whose element has K possibility. 
Here M is the number of nodes on one edge line. 
 

 
Fig. 3: Energy in compatibility function 

 
For example, one edge line without any junction is 
considered. Messages are passing from the end of the edge 
to the other end of the edge as shown in Fig. 4. Mnm which 
denotes the message sent from node m to node n is defined 
as 
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n
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Mpre is the summation of all messages coming into m node. 
Mnm is a vector with K elements over all possible indices. 
Mnm means how proper node n is in term of node m. If node 
m believes node n has to be assigned to index i, ith element 
of Mnm has minimum energy. Table 1 shows pseudo-code 
for belief propagation. M is the number of nodes.  
 

 
Fig. 4: Flow of message passing 

 
3. VALIDITY OF SELF-TRAINING 

 
There is something doubtful about that an input image can 
be used as a training image. In this section we show how 
valid our approach is for example based super-resolution. 
We present two reasons: one is straightness on the curve  

Table1: Pseudo code for BP 

 
 
edges and the other is that our approach shows better 
performance in ROC curve tests. 
 
3.1 Straightness 
 
It is clear that an image such as Fig. 5(b) which has only 
straight components can be super-resolved successfully. 
The image shown in Fig. 5(a), however, seems hard to be 
super-resolved. Although the image has curvature on the 
primitives, it can be considered as straight line because 
curvature is relatively small compared with the patch size. 
Image primitives in the red circle in Fig. 5(a) can be 
super-resolved to the result in the blue circle.  
 

  
(a)           (b) 

    
(c) 

Fig. 5: Straightness 
 
3.2 ROC curve test 
The ROC (Receiver Operating Characteristic) [12] 
represents the proportion (y-axis) of patches whose error 
are smaller than e’ (x-axis)to the given error e’. Error e’ is 
defined as 

'
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x
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where x is patches to be tested and x’ is ground truth. For 
the ROC curve test, we down-sampled a high resolution 
image and applied our approach to the low resolution 
image. The result is compared with original high resolution 
image. The ROC curve indicates the proportion of success, 
area under the graph line shows the performance. Fig. 8 
shows ROC curves. We extract patches from input images 
(a) and (b) shown in Fig. 6 respectively (self-training). In 
general training, images shown in Fig. 7 were used. For 
more accurate evaluation after self-training algorithm, 
same number of patches with self-training was extracted in 
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general training. In Fig. 6(a) and (b) we extracted about 
6000 patches. ROC curves of self-training for Fig. 6(a) 
which have lots of straight edges shows outstanding 
performance. In Fig. 6(b) which has more complex details, 
self-training shows smallest error rate as well. Self training 
is even better ROC than other images containing similar 
objects.  
 

  
(a)                   (b) 

Fig. 6: Input image in ROC test 
 

 

 
Fig. 7: Training images 

 

 
           (a)                    (b) 

Fig. 8: ROC curves 
 
 

4. EXPERIMENTAL RESULTS 
 
We did all experiments with Core2Duo E6700 2.0GHz cpu 
and 2GB DDR2 ram. We used 9X9 patch size and variance 
of Gaussian of 1.2. 
 
4.1 Comparison with General Training 
 
Images shown in Fig. 9 are used in qualitative and 
quantitative comparison. In general training 680,000 
patches were extracted from Fig. 7. We do not include all 
details here because of space limit. Visual results for some 
parts of only Fig. 9(a),(e) are shown here. Although 
self-training has only about 5,000 training patches it 
reconstructs well compared with general training. 
Self-training can consequently reduces memory space and 
processing time remarkably. Processing time for Fig. 9 is 
listed in Table 2. Self-training takes about 1/7 processing 
time of general training. 
 

 
     (a)      (b)      (c)       (d)       (e) 

Fig. 9: Images used in comparison with general training 
 

  

  

  
  (a) General training          (b) self-training 

Fig. 10: Comparison with general training 
 

Table 2: Processing time 
 General training Self-training 

(a) 64.45 5.20 
(b) 14.16 2.86 
(c) 97.65 8.77 
(d) 15.02 2.51 
(e) 22.02 3.28 

 
 
4.1 Comparison with Other Approaches 
 
Fig. 11 shows comparison with bicubic+unsharp masking, 
IBP (Iterative Back Projection) [1] and original high 
resolution images for Fig. 9(c),(d). Self training preserve 
acutance of input images. In IBP ringing artifacts along the 
edge are visible. Bicubic with unsharp masking has jaggy 
artifacts. Since our approach uses single image, it can not 
reconstruct highly textured regions multi-frame 
super-resolution can do. It is inherent limitation of single 
frame super-resolution.  
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    (a) Bicubic + unsharp            (b) IBP                (c) Self-training          (d) Original image 

Fig. 11: Comparison with other approaches 
 

 
5. CONCLUSION 

 
In this paper we described self-training super-resolution. 
Example based super resolution has inherent problem such 
as memory space and processing time. We dealt with these 
problems by considering an input image itself as a library 
for primitives. We showed validity of self-training 
super-resolution through ROC curves and consideration of 
patch size. Experimental results on measurement of 
processing time showed our approach is much faster than 
general training super-resolution with preserving qualities. 
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