• Title/Summary/Keyword: Super-homogenization

Search Result 7, Processing Time 0.018 seconds

Analysis of C5G7-TD benchmark with a multi-group pin homogenized SP3 code SPHINCS

  • Cho, Hyun Ho;Kang, Junsu;Yoon, Joo Il;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1403-1415
    • /
    • 2021
  • The transient capability of a SP3 based pin-wise core analysis code SPHINCS is developed and verified through the analyses of the C5G7-TD benchmark. Spatial discretization is done by the fine mesh finite difference method (FDM) within the framework of the coarse mesh finite difference (CMFD) formulation. Pin size fine meshes are used in the radial fine mesh kernels. The time derivatives of the odd moments in the time-dependent SP3 equations are neglected. The pin homogenized group constants and Super Homogenization (SPH) factors generated from the 2D single assembly calculations at the unrodded and rodded conditions are used in the transient calculations via proper interpolation involving the approximate flux weighting method for the cases that involve control rod movement. The simplifications and approximations introduced in SPHINCS are assessed and verified by solving all the problems of C5G7-TD and then by comparing with the results of the direct whole core calculation code nTRACER. It is demonstrated that SPHINCS yields accurate solutions in the transient behaviors of core power and reactivity.

On the equivalence of reaction rate in energy collapsing of fast reactor code SARAX

  • Xiao, Bowen;Wei, Linfang;Zheng, Youqi;Zhang, Bin;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.732-740
    • /
    • 2021
  • Scattering resonance of medium mass nuclides leads complex spectrum in the fast reactor, which requires thousands of energy groups in the spectrum calculation. When the broad-group cross sections are collapsed, reaction rate cannot be completely conserved. To eliminate the error from energy collapsing, the Super-homogenization method in energy collapsing (ESPH) was employed in the fast reactor code SARAX. An ESPH factor was derived based on the ESPH-corrected SN transport equation. By applying the factor in problems with reflective boundary condition, both the effective multiplication factor and reaction rate were conserved. The fixed-source iteration was used to ensure the stability of ESPH iteration. However, in the energy collapsing process of SARAX, the vacuum boundary condition was adopted, which was necessary for fast reactors with strong heterogeneity. To further reduce the error caused by leakage, an additional conservation factor was proposed to correct the neutron current in energy collapsing. To evaluate the performance of ESPH with conservation factor, numerical benchmarks of fast reactors were calculated. The results of broad-group calculation agreed well with the direct full-core Monte-Carlo calculation, including the effective multiplication factor, radial power distribution, total control rod worth and sodium void worth.

High performance 3D pin-by-pin neutron diffusion calculation based on 2D/1D decoupling method for accurate pin power estimation

  • Yoon, Jooil;Lee, Hyun Chul;Joo, Han Gyu;Kim, Hyeong Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3543-3562
    • /
    • 2021
  • The methods and performance of a 3D pin-by-pin neutronics code based on the 2D/1D decoupling method are presented. The code was newly developed as an effort to achieve enhanced accuracy and high calculation performance that are sufficient for the use in practical nuclear design analyses. From the 3D diffusion-based finite difference method (FDM) formulation, decoupled planar formulations are established by treating pre-determined axial leakage as a source term. The decoupled axial problems are formulated with the radial leakage source term. To accelerate the pin-by-pin calculation, the two-level coarse mesh finite difference (CMFD) formulation, which consists of the multigroup node-wise CMFD and the two-group assembly-wise CMFD is implemented. To enhance the accuracy, both the discontinuity factor method and the super-homogenization (SPH) factor method are examined for pin-wise cross-section homogenization. The parallelization is achieved with the OpenMP package. The accuracy and performance of the pin-by-pin calculations are assessed with the VERA and APR1400 benchmark problems. It is demonstrated that pin-by-pin 2D/1D alternating calculations within the two-level 3D CMFD framework yield accurate solutions in about 30 s for the typical commercial core problems, on a parallel platform employing 32 threads.

Processing and Mechanical Properties of Ni-Cr and Ni-Cr-Al Foams by Pack-Cementation

  • Dunand, David;Choe, Hui-Man
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.19.1-19.1
    • /
    • 2009
  • Open-cell Ni-Cr and Ni-Cr-Al(with gamma/gamma prime microstructure typical of Bi-base super alloys) foams are manufactured by pack-cementation at $1000{\boxplus}$degrees C, followed by homogenization at $1200{\boxplus}C$. The resulting alloyed foams retain the low relative densities (less than 3.5 wt.%). The oxidation behavior of Ni-Cr foams turns out to be identical to that of bulk Ni-Cr alloys, after taking into account the foam's higher surface area. The room-temperature compressive behavior of the Ni-Cr and Ni-Cr-Al is compared to model predictions. Additionally, the foam creep behavior, measured between 680 and $825{\boxplus}C$ in the stress range of 0.1-0.3 MPa, compared to two analytical models, namely strut compression and strut bending as high-temperature deformation modes.

  • PDF

Proposal of Smart BIM Library Framework for Curtain Wall with different LOD on each project stage (프로젝트 단계별 LOD가 반영된 스마트 BIM 커튼월 라이브러리 체계 구축)

  • Kim, Beom-Jun;Kim, Seong-Ah;Kim, Byeong-Ju;Chin, Sang-Yoon
    • Journal of KIBIM
    • /
    • v.7 no.2
    • /
    • pp.44-55
    • /
    • 2017
  • Recently, there has been a growing interest in the life cycle management field of buildings through the introduction of BIM. And as BIM application is expanded, BIM ordering guidelines and guidelines are becoming popular. Also, as diverse forms of buildings including super high-rise building have been generalized, attention to the importance of curtain walls that are advantageous for construction period shortening, building lighting and quality homogenization has been increasing. However, all BIM information from the design stage to the maintenance stage is not accumulated in stages. And the input information is not improved in proportion to the level of appearance of the BIM model. Also, current curtain wall designs rely heavily on curtain wall consulting firms or utilize accumulated data from existing processes. In this study, curtain wall components, shape and property information were derived by analyzing BIM guidelines and curtain wall construction standards to contribute to solving these problems. And the curtain wall smart BIM library which can be converted according to LOD(Level of Development) has been produced and its applicability has been verified. Through the library, curtain wall information can be systematically managed in the library from design to construction and maintenance. And the library will contribute to the expansion and activation of the BIM library market in the future.

Mirror Surface Grinding Characteristics and Mechanism of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 경면연삭가공 특성)

  • 박규열;이대길;중천위웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2514-2522
    • /
    • 1994
  • The mirror surface grinding of carbon fiber reinforced plastics(CFRP) was realized by using the metal bonded super-abrasive micro grain wheel with electrolytic in-process dressing(ELID). The maximum surface roughness $R_{max}$ of CFRP which was obtained with #6,000 wheel, was 0.65 $\mu{m}$, which was rougher surface finish compared to those of hard and brittle materials with the same mesh number wheel with ELID. The grinding performance was much dependent on the grinding direction and the best surface roughness was obtained at $90^{\circ}C$ grinding with fiber direction. The spark-out effect on the surface improvement was significant when smaller mesh number grinding wheels were used. From the surface observations of CFRP with scanning electron microscope(SEM) and Auger electron spectroscopy(AES), it was found that the mirror surface grinding of CFRP was generated by the homogenization due to carbonization of the ground surface and smearing of chips composed of the carbon fiber and carbonized epoxy resin into the ground surface.

Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2788-2802
    • /
    • 2021
  • Multigroup cross section (MG XS) generation by the UNIST in-house Monte Carlo (MC) code MCS for fast reactor analysis using nodal diffusion codes is reported. The feasibility of the approach is quantified for two sodium fast reactors (SFRs) specified in the OECD/NEA SFR benchmark: a 1000 MWth metal-fueled SFR (MET-1000) and a 3600 MWth oxide-fueled SFR (MOX-3600). The accuracy of a few-group XSs generated by MCS is verified using another MC code, Serpent 2. The neutronic steady-state whole-core problem is analyzed using MCS/RAST-K with a 24-group XS set. Various core parameters of interest (core keff, power profiles, and reactivity feedback coefficients) are obtained using both MCS/RAST-K and MCS. A code-to-code comparison indicates excellent agreement between the nodal diffusion solution and stochastic solution; the error in the core keff is less than 110 pcm, the root-mean-square error of the power profiles is within 1.0%, and the error of the reactivity feedback coefficients is within three standard deviations. Furthermore, using the super-homogenization-corrected XSs improves the prediction accuracy of the control rod worth and power profiles with all rods in. Therefore, the results demonstrate that employing the MCS MG XSs for the nodal diffusion code is feasible for high-fidelity analyses of fast reactors.