• Title/Summary/Keyword: Super-cavity

Search Result 37, Processing Time 0.026 seconds

Super-Cavitating Flow Problems about Two-Dimensional Symmetric Strut (2차원 대칭 스트럿 주위의 초월 공동 유동 문제의 해석)

  • Y.G.,Kim;C.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.15-26
    • /
    • 1990
  • This paper describes a potential-baoed panel method formulated for the analysis cf a supercavitating two-dimensional symmetri strut. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type, With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lifting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged.

  • PDF

AN EXPERIMENTAL STUDY ON ADHESION PATTERN, ADHESION STRENGTH AND FRACTURE PATTERN OF THE ADHESIVE CAST GOLD INLAY (접착형 구조 금 인레이의 접착 형태, 강도 및 파절 양태에 관한 실험적 연구)

  • Han, Seoung-Ryul;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.64-72
    • /
    • 1994
  • Zinc Phosphate Cement hand been used for about more than 100 years in luting of cast gold inlay. But many scientists had been trying to develop the new form of luting agent because the ZPC hand shown the lack of adhesiveness on the tooth structure and the toxicity to the pulp tissue. Recently many researches about the surface treatment of the cast body are being done to increase the adhesion of cement to it. The conventional Class I gold inlays were fabricated in the 20 permanent molars. After the internal surface of the cast body was sandblasted with $Al_2O_3$ particles and was tin-plated, the inlays were cemented with adhesive cement [G I cement and resin cement(Super-Bond & $Panavia_{EX}$)] and the evaluation on the adhesion pattern, adhesive strength and the fracture pattern of the adhesive cast gold inlay was compared to that of the cast gold inlay cemented conventionally with ZPC. The results were as follows : 1. The surface roughness of the cast body was increased significantly after sandblasting with the $Al_2O_3$ particles and the tin oxide layer, which was consisted of round particles, came into being. 2. The bond strength was in the order of Super-Bond, ZPC, Fuji I, $Panavia_{EX}$ group. The group cemented with Super-Bond showed statistically greater strength than the other groups(p<0.05). 3. The group cemented with ZPC was fallen apart by principal adhesion failure and that with Fuji I was by complete adhesion failure. But the group with Super-Bond showed pricncipal cohesive failure pattern and in the group with $Panavia_{EX}$, complete cohesive fracture pattern was shown and small protion of tooth structure was fractured out with cast body and the fractured surface showed the figure just as the enamel prism. 4. Various gaps were shown at the pulpal side regardless of little gap at the side walls of the cavity in all groups. Only the Super-Bond was attached to the tooth structure and the other cements were detached from both the tooth and the cast body.

  • PDF

Influences of the Filter Effect on Pulse Splitting in Passively Mode-Locked Fiber Laser with Positive Dispersion Cavity

  • Chen, Xiaodong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.130-135
    • /
    • 2015
  • Based on the extended nonlinear Schr$\ddot{o}$dinger equation, the influences of the filter effect on pulse splitting in a passively mode-locked erbium-doped fiber laser with positive dispersion cavity are investigated theoretically. Numerical results show that, as the bandwidth of the spectral filter decreases, the nonlinear chirp appended to the pulse increases under the combined action of the filter effect of the super-Gaussian spectral filter and the self-phase modulation effect. On further decreasing the bandwidth, the wave breaking of the pulse takes place. In addition, by varying the pump power of the laser or the profile of the spectral filter, the influences of the filter effect on pulse splitting also change accordingly.

The Characteristic of Strength for a Lime Stone in Donghae Area and Harden Cement Milk of Super Injection Grouting (동해 석회암과 SIG 고결체의 강도특성)

  • Park, Young-Ho;Kim, Nak-Young;Hong, Sa-Myun;Yook, Jeong-Hoon;Kim, Ki-Seog
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.137-145
    • /
    • 2004
  • Limestone zone in korea have been distributed to diagonal line so that it is wide from the Gangwondo to the Jeonlanamdo. The limestone cavity and fractured zone were formed by chemical weathering. Limestone cavity and fractured zone was reinforced with cemented milk(w/c=60%)by high pressure jet grouting by tripple -pipe to establish bridge foundation on the ground condition like limestone cavity. To analyze property of limestone and solid of cement milk(w/c=65%), mixed solid of cement, core NX size in the limestone cavity and fractured zone and compressive strength. Seismic tomograpy exploration was pcrforn1cd to analyze deformation modulus of limestone. The analysis suggests that deformation modulus of limestone has effect on uniaxial compressive strength, seismic velocity, seismic elasticity modulus. Average static elasticity modulus of limestone is $5.08{\times}10^5kgf/cm^2$, cement and coal mixed solid is $0.25{\times}10^5kgf/cm^2$, $0.095{\times}10^5kgf/cm^2$. Average seismic velocity of limestone is 5.240m/sec, cement and coal mixed solid is 2,211.3m/sec, 1,447.5m/sec. Average uniaxial compressive strength of limestone was $1,221.3kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $125.22kgf/cm^2$, $35kgf/cm^2$ each other. Average friction angle of limestone was $49.14^{\circ}$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $38.39^{\circ}, 25.83^{\circ}$ each other. Average cohesion of limestone was $137.7kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $23.5kgf/cm^2$, $15.5kgf/cm^2$ each other. Average deformation modulus of limestone was $2.84{\times}10^5kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $0.4{\times}10^5kgf/cm^2, 0.12{\times}10^5kgf/cm^2$ each other. It was analyzed that the elasticity and uniaxial compressive strength, seismic velocity of solid of cement milk mixed limestone pieces and coal had an highly interrelation regardless of existence of limestones pieces and coal but it had shown that limestones had an lower interrelation. In case of field seismic velocity and deformation of limestone, SIC solid of cement milk mixed with coal and limestone pieces had an highly interrelation.

  • PDF

COMPARISON OF THE SEALING ABILITY OF VARIOUS RETROGRADE FILLING MAIERIALS (수종의 역충전 재료의 치근단 밀폐력 비교)

  • 황윤찬;강인철;황인남;오원만
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.379-386
    • /
    • 2001
  • This study was performed to evaluate the sealing ability of various retrograde filling materials by using bacterial penetration and dye penetration test. One hundred and forty extracted human teeth with single, straight canals and mature apiece were collected and used for this study. All canals were instrumented using an engine driven Ni-Ti file (ProFile). After removing 3mm from the apex of tooth, a standardized 3mm root end cavity was prepared using an ultrasonic instrument. The 70 teeth were randomly divided into 7 groups : 6 groups for retrograde filling using Super-EBA, ZOE, Chelon-Silver, IRM, ZPC and amalgam. The 7th group was used as a negative control. Nail varnish was applied to all external root surfaces to the level of the reseated root ends to prevent lateral microleakages. The specimens were then sterilized in an ethylene oxide sterilizer for 24 hours. 2 mm of the reseated root was immersed in a culture chamber containing a Tripticase Soy Broth with a phenol red indicator. The coronal access of each specimen was inoculated every 72 hours with suspension of Proteus vulgaris. The culture media were observed every 24hours for color change indicating bacterial contamination. The specimens were observed for 4weeks. The remaining 70 teeth were submitted to a dye penetration test. The canals of all teeth were first sealed with AH26 and obturated using an Obtura II system. Root resection, root end preparation and retrograde filling was performed as above. All specimens were suspended in 2% methylene blue dye for 72 hours before being ion gitudinally split. The degree of dye penetration was then measured using a stereomicroscope at 10 magnification and evaluated. The results were as floows : 1. In the bacterial penetration, the degree of leakage was the lowest in the Super-EBA, followed by, in ascending order, ZOE, Chelon-Silver IRM and ZPC. The amalgam showed highest bacterial leakage of all(p<0.01). 2. In the dye penetration, the degree of microleakage was the lowest in the Chelon-Silver and Super-EBA, followed by, in ascending order, IRM, ZPC. The ZOE and amalgam showed the highest microleakage of all (p<0.05). These results suggested that the eugenol based cement, Super-EBA, have excellent sealing ability as a retrograde filling material.

  • PDF

A STUDY ON THE GLOSS AND ROUGHNESS OF THE COMPOSITE RESIN (복합레진의 광택 및 표면조도에 관한 연구)

  • Cho, Seung-Joo;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.1
    • /
    • pp.67-80
    • /
    • 1990
  • This study was performed for elucidating the effects on surface polishing of composite resins. In this study, Silux(microfilled), Graft(hybrid), Bisfil- I (hybrid posterior) and Hi-pol(conventional) were used. Sixty specimens were made with 4 brands of composite resins and Optilux system in $2.0{\times}1.3{\times}1.0cm$ resin block which has a cavity with 0.5cm diameter and 0.5cm depth. Polishing was done with #600 sand paper and Soflex, Super-snap, Micron finishing system, or Composite polishing kit. Final polished surfaces were measured by roughness tester(Kasaka Lab. Ltd., Japan) and image analyser(Omnimet Image Analyser, Buehler, USA). The results were as follows, 1. The celluloid strip produced the smoothest surfaces. 2. Light curing microfilled composite resin, Silux, had smoother surface than any others. 3. The surfaces polished by Soflex were smoothest. 4. Aluminum oxide disk, Soflex and Super-Snap, made smoother surface than diamond bur, M.F.S., or silicon point, Composite polishing kit. 5. The roughness values of surface polished by M.F.S. composed of diamond burs, were less than those of Composite polishing kit made from silicone points.

  • PDF

The Leakage and Rotordynamic Analysis of A Combination-Type-Staggered-Labyrinth Seal for A Steam Turbine (스팀 터빈용 조합형 엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong;Lee, Yong-Bok;Kim, Seung-Jong;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.45-54
    • /
    • 2004
  • Governing equations and numerical solution methods are derived for the analysis of a combination-type-staggered-labyrinth seal used in high performance steam turbines. A bulk flow is assumed for each combination-type-staggered-labyrinth cavity. Axial flow through a throttling labyrinth strip is determined by Neumann's leakage equation and circumferential flow is assumed to be completely turbulent in the labyrinth cavity. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion near the centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the combination-type-staggered-labyrinth seal. Theoretical results of leakage and rotordynamic characteristics for the IP4-stage seal of USC (ultra super critical) steam turbine are shown with the effect of sump pressure, the number of throttling labyrinth strip, and rotor speed.

Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment (해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO CAVITY DESIGN OF CLASS V COMPOSITE RESIN FILLING (5급와동의 복합레진 충전에 관한 유한요소법적 응력분석)

  • Um, Chung-Moon;Kwon, Hyuk-Choon;Son, Ho-Hyun;Cho, Byeong-Hoon;Rim, Young-Il
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.67-75
    • /
    • 1999
  • The use of composite restorative materials is established due to continuing improvements in the materials and restorative techniques. Composite resins are widely used for the restoration of cervical lesions because of esthetics, good physical properties and working time. There are several types of cavity design for class V composite resin filling, but inappropriate cavity form may affect bonding failure, microleakage and fracture during mastication. Cavity preparations for composite materials should be as conservative as possible. The extent of the preparation is usually determined by the size, shape, and location of the defect. The design of the cavity preparation to receive a composite restoration may vary depending on several factors. In this study, 5 types of class V cavity were prepared on each maxillary central incisor. The types are; 1) V-shape, 2) round(U) shape, 3) box form, 4) box form with incisal bevel and 5) box form with incisal bevel and grooves for axial line angles. After restoration, in order to observe the concentration of stress at bonding surfaces of teeth and restorations, developing a 2-dimensional finite element model of labiopalatal section in tooth, surrounding bone, periodontal ligament and gingiva, based on the measurements by Wheeler, loading force from direction of 45 degrees from lingual side near the incisal edge was applied. This study analysed Von Mises stress with SuperSap finite element analysis program(Algor Interactive System, Inc.). The results were as follows : 1. Stress concentration was prevalent at tooth-resin bonding surface of cervical side on each model. 2. In model 2 without line angle, stress was distributed evenly. 3. Preparing bevel eliminated stress concentration much or less at line angle. 4. Model with round-shape distributed stress concentration more evenly than box-type model with sharp line angle, therefore decreased possibility of fracture. 5. Adding grooves to line angles had no effect of decreasing stress concentration to the area.

  • PDF

Numerical study on Reynolds number effects on the aerodynamic characteristics of a twin-box girder

  • Laima, Shujin;Wu, Buchen;Jiang, Chao;Chen, Wenli;Li, Hui
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.285-298
    • /
    • 2019
  • For super long-span bridges, the aerodynamic forces induced by the flow passing the box girder should be considered carefully. And the Reynolds number sensitively of aerodynamic characteristics is one of considerable issue. In the study, a numerical study on the Reynolds number sensitivity of aerodynamic characteristic (flow pattern, pressure distribution and aerodynamic forces) of a twin-box girder were carried out using large eddy simulation (LES) with the dynamic Smagorinsky-Lilly subgrid model. The results show that the aerodynamic characteristics have strong correlation with the Reynolds number. At the leading edge, the flow experiences attachment, departure, and reattachment stages accompanying by the laminar transition into turbulence, causing pressure plateaus to form on the surface, and the pressure plateaus gradually shrinks. Around the gap, attributing that the flow experiences stages of laminar cavity flow, the wake with alternate shedding vortices, and turbulent cavity flow in sequence with an increase in the Reynolds number, the pressures around the gap vary greatly with the Reynold number. At the trailing edge, the pressure gradually recovers as the flow transits to turbulence (the flow undergoes wake instability, shear layer transition-reattachment station), In addition, at relative high Reynolds numbers, the drag force almost does not change, however, the lift force coefficient gradually decreases with an increase in Reynolds number.