Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.2.130

Influences of the Filter Effect on Pulse Splitting in Passively Mode-Locked Fiber Laser with Positive Dispersion Cavity  

Chen, Xiaodong (State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute)
Publication Information
Journal of the Optical Society of Korea / v.19, no.2, 2015 , pp. 130-135 More about this Journal
Abstract
Based on the extended nonlinear Schr$\ddot{o}$dinger equation, the influences of the filter effect on pulse splitting in a passively mode-locked erbium-doped fiber laser with positive dispersion cavity are investigated theoretically. Numerical results show that, as the bandwidth of the spectral filter decreases, the nonlinear chirp appended to the pulse increases under the combined action of the filter effect of the super-Gaussian spectral filter and the self-phase modulation effect. On further decreasing the bandwidth, the wave breaking of the pulse takes place. In addition, by varying the pump power of the laser or the profile of the spectral filter, the influences of the filter effect on pulse splitting also change accordingly.
Keywords
Fiber laser; Passively mode-locked; Dissipative soliton; Spectral filter;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer, Berlin, Germany, 2005).
2 F. W. Wise, A. Chong, and W. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 2, 58-73 (2008).   DOI
3 B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, "Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers," J. Opt. Soc. Am. B 25, 1763-1770 (2008).   DOI   ScienceOn
4 X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, and D. Y. Shen, "All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter," Laser Phys. 21, 940-944 (2011).   DOI
5 L. A. Vazquez-Zuniga, Y. C. Jeong, "Power-scalable, sub-nanosecond mode-locked erbium-doped fiber laser based on a frequency-shifted-feedback ring cavity incorporating a narrow bandpass filter," J. Opt. Soc. Korea 17, 177-181 (2013).   DOI   ScienceOn
6 A. Cabasse, B. Ortac, G. Martel, A. Hideur, and J. Limpert, "Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion," Opt. Express 16, 19322-19329 (2008).   DOI
7 X. H. Li, Y. S. Wang, W. Zhao, X. L. Liu, Y. G. Wang, Y. H. Tsang, W. Zhang, X. H. Hu, Z. Yang, C. X. Gao, C. Li, and D. Y. Shen, "All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser," J. Lightwave Technol. 30, 2502-2507 (2012).   DOI   ScienceOn
8 L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, "Pulse breaking recovery in fiber lasers," Opt. Express 16, 12102-12107 (2008).   DOI
9 G. P. Agrawal, "Amplification of ultrashort solitons in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 875-877 (1990).   DOI   ScienceOn
10 A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).   DOI
11 G. Martel, C. Chedot, A. Hideur, and P. Grelu, "Numerical maps for fiber lasers mode locked with nonlinear polarization evolution: Comparison with semi-analytical models," Fiber Integr. Opt. 27, 320-340 (2008).   DOI   ScienceOn
12 A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, "Normal dispersive ultrafast fiber oscillators," IEEE J. Select. Topics Quantum Electron. 15, 170-181 (2009).   DOI   ScienceOn
13 C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).   DOI
14 Y. M. Wang, H. Shen, L. Q. Hua, C. J. Hu, and B. Zhang, "Predissociation dynamics of the B state of CH3I by femtosecond pump-probe technique," Opt. Express 17, 10506-10513 (2009).   DOI
15 F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. Chichkov, and A. Tuennermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Express 7, 41-49 (2000).   DOI
16 H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, "Dissipative vector solitons in a dispersion- managed cavity fiber laser with net positive cavity dispersion," Opt. Express 17, 455-460 (2009).   DOI
17 A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, "Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers," Opt. Fiber Technol. 14, 262-267 (2008).   DOI   ScienceOn
18 X. M. Liu, "Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity," Opt. Express 17, 22401-22416 (2009).   DOI
19 L. A. Vazquez-Zuniga and Y. C. Jeong, "Wavelength-tunable, passively mode-locked erbium-doped fiber master-oscillator incorporating a semiconductor saturable absorber mirror," J. Opt. Soc. Korea 17, 117-129 (2013).   DOI   ScienceOn
20 G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Boston, USA, 2007).