Browse > Article
http://dx.doi.org/10.14773/cst.2021.20.6.466

Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment  

Heo, Ho-Seong (Graduate School, Mokpo National Maritime University)
Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
Publication Information
Corrosion Science and Technology / v.20, no.6, 2021 , pp. 466-474 More about this Journal
Abstract
A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.
Keywords
Duplex stainless steel; Cavitation; Erosion; Electrochemical corrosion; UNS S32750;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. K. Baek, H.J Sung, I.P Hong, C. S Im, and D. K. Kim, Evaluation of Pitting Corrosion Resistance of High-Alloyed Stainless Steels Welds for FGD Plants in Korea, NACE CORROSION, p. 98474 (1998). Doi: https://onepetro.org/NACECORR/proceedings-abstract/CORR98/All-CORR98/NACE-98474/127908
2 R. M. Davison, T. R. Laurin, J. D. Redmond H. Watanabe, and M. Semchyshen, A Review of Worldwide Development in Stainless Steels, Materials & Design, 7, 111 (1986). Doi: https://doi.org/10.1016/0261-3069(86)90001-4   DOI
3 Y. Mori, Y. Gao, J. Liao, S, and S. Motada, The Influence of Inclusions on the Corrosion Resistance of Duplex Stainless Steel, Corrosion Engineering, 66, p. 93 (2017). Doi: https://doi.org/10.3103/S0892422817040061   DOI
4 H. Hwang and Y. Park, Effects of Heat Treatment on the Phase Ratio and Corrosion Resistance of Duplex Stainless Steel, Materials Transactions, 50, 1548 (2009). Doi: https://doi.org/10.2320/matertrans.MER2008168   DOI
5 J. A. Jimenez, M. Carsi, and O. A. Ruano, Characterization of a δ/γ duplex stainless steel, Journal of Material Science, 35, 907 (2000). Doi: https://doi.org/10.1023/A:1004750424897   DOI
6 O. Takakuwa, T. Ohmi, M. Nishikawa, A. T. Yokobori Jr and, H. Soyama, Suppression of fatigue crack propagation with hydrogen embrittlement in stainless steel by cavitation peening, Strength, Fracture and Complexity, 7, 79 (2011). Doi: https://doi.org/10.3233/SFC-2011-0126   DOI
7 J. Gaoa, Y. Jianga, B. Denga, W. Zhang, C. Zhonga, and J. Li, Investigation of selective corrosion resistance of aged lean duplex stainless steel, Electrochimica Acta, 54, 5830 (2009), Doi: https://doi.org/10.1016/j.electacta.2009.05.03913   DOI
8 A. A. Hashem, P. G. Caceres, A. Abdullah and, H. M. Shalaby, Cavitation Corrosion of Duplex Stainless Steel in Seawater, Corrosion, 53, 103 (1997). Doi: https://doi.org/10.5006/1.3280438   DOI
9 H. Y. Ha, T. H Lee, C. G. Lee, and H. Yoon, Understanding the relation between pitting corrosion resistance and phase fraction of S32101 duplex stainless steel, Corrosion Science, 149, 226 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.01.001   DOI
10 A. Pardo, E. Otero, M. C. Merino, M. D. Lopez, M. V. Utrilla, and, F. Moreno, Influence of pH and Chloride Concentration on the Pitting and Crevice Corrosion Behavior of High-Alloy Stainless Steels, Corrosion, 56, 411 (2000). Doi: https://doi.org/10.5006/1.3280545   DOI
11 K. W. Nam, J. E. Paeng and K. Y. Kim, Immersion Characteristics of STS316L with Degree of Different Cold Rolling, Journal of Power System Engineering, 24, 90 (2020). Doi: https://doi.org/10.9726/KSPSE.2020.24.3.090   DOI
12 Y. S. Kim, Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels, Corrosion Science and Technology, 9, 20 (2010). Doi: https://doi.org/10.14773/cst.2010.9.1.020   DOI
13 A. Karimi and J. L. Martin, Cavitation erosion of materials, International Metal Reviews, 31, 1 (1986). Doi: https://doi.org/10.1179/imtr.1986.31.1.1   DOI
14 A. Karimi, Cavitation erosion of a duplex stainless steel, Materials Science and Engineering, 86, 191 (1987). Doi: https://doi.org/10.1016/0025-5416(87)90452-6   DOI
15 J. H. Kim and S. J. Kim, The Effect of Molybdenum on Cavitation Erosion and Corrosion Resistance of Fe-Cr-C-Si Hardfacing Alloys, Journal of Nuclear Science and Technology, 45, 93 (2008). Doi: https://doi.org/10.1080/00223131.2008.10875794   DOI
16 P. V. Rao, Evaluation of epoxy resins in flow cavitation erosion, Wear, 122, 77 (1988). Doi: https://doi.org/10.1016/0043-1648(88)90008-7   DOI
17 M. Sakashita and N. Sato, The effect of molybdate anion on the ion-selectivity of hydrous ferric oxide films in chloride solutions, Corrosion Science, 17, 473 (1977). Doi: https://doi.org/10.1016/0010-938X(77)90003-8   DOI
18 S. H. Bae and H. W. Lee, Effect of Mo Contents on Corrosion Behaviors of Welded Duplex Stainless Steel, Metals and Materials International, 19, 563 (2013). Doi: https://doi.org/10.1007/s12540-013-3026-6   DOI
19 S. J. Kim, M. S. Han, and M. S. KIM, Evaluation of Corrosion and the Anti-Cavitation Characteristics of Cu Alloy by Water Cavitation Peening, Corrosion Science and Technology, 11, 184 (2012). Doi: https://doi.org/10.14773/cst.2012.11.5.184   DOI
20 C. T. Kwok, H. C. Man and, F. T. Cheng, Cavitation erosion and damage mechanism of alloys with dupelx structures, Materials Science and Engineering, 242, 108 (1998). Doi: https://doi.org/10.1016/S0921-5093(97)00514-5   DOI
21 H. Y. Chang, H. B. Park, Y. S. Kim, S. K. Ahn, and K. T. Kim, Compatibility Evaluation for Application of Lean Duplex Stainless Steels to Seawater Systems in Nuclear Power Plants, Materials Science Forum, 654-656, 382 (2010). Doi: https://doi.org/10.4028/www.scientific.net/MSF.654-656.382   DOI
22 J. R. Davis, ASM specialty handbook on stainless steel, ASM international, 1, p. 378 (1994). Doi: https://www.asminternational.org/home/-/journal_content/56/10192/06398G/PUBLICATION
23 J. H. Ha, C. H Jeon and Y. C. Kwon, A Study on the Emission Characteristics for Blended Power Bio-Fuel Oil, Transaction of the Korean Hydrogen and New Energy Society, 26, 484 (2015). Doi: http://dx.doi.org/10.7316/KHNES.2015.26.5.484   DOI