• Title/Summary/Keyword: Super-Resolution Technique

Search Result 68, Processing Time 0.028 seconds

A Study on Improving License Plate Recognition Performance Using Super-Resolution Techniques

  • Kyeongseok JANG;Kwangchul SON
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we propose an innovative super-resolution technique to address the issue of reduced accuracy in license plate recognition caused by low-resolution images. Conventional vehicle license plate recognition systems have relied on images obtained from fixed surveillance cameras for traffic detection to perform vehicle detection, tracking, and license plate recognition. However, during this process, image quality degradation occurred due to the physical distance between the camera and the vehicle, vehicle movement, and external environmental factors such as weather and lighting conditions. In particular, the acquisition of low-resolution images due to camera performance limitations has been a major cause of significantly reduced accuracy in license plate recognition. To solve this problem, we propose a Single Image Super-Resolution (SISR) model with a parallel structure that combines Multi-Scale and Attention Mechanism. This model is capable of effectively extracting features at various scales and focusing on important areas. Specifically, it generates feature maps of various sizes through a multi-branch structure and emphasizes the key features of license plates using an Attention Mechanism. Experimental results show that the proposed model demonstrates significantly improved recognition accuracy compared to existing vehicle license plate super-resolution methods using Bicubic Interpolation.

MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space (3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화)

  • Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

Recent Developments in Correlative Super-Resolution Fluorescence Microscopy and Electron Microscopy

  • Jeong, Dokyung;Kim, Doory
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • The recently developed correlative super-resolution fluorescence microscopy (SRM) and electron microscopy (EM) is a hybrid technique that simultaneously obtains the spatial locations of specific molecules with SRM and the context of the cellular ultrastructure by EM. Although the combination of SRM and EM remains challenging owing to the incompatibility of samples prepared for these techniques, the increasing research attention on these methods has led to drastic improvements in their performances and resulted in wide applications. Here, we review the development of correlative SRM and EM (sCLEM) with a focus on the correlation of EM with different SRM techniques. We discuss the limitations of the integration of these two microscopy techniques and how these challenges can be addressed to improve the quality of correlative images. Finally, we address possible future improvements and advances in the continued development and wide application of sCLEM approaches.

Super Resolution Algorithm Based on Edge Map Interpolation and Improved Fast Back Projection Method in Mobile Devices (모바일 환경을 위해 에지맵 보간과 개선된 고속 Back Projection 기법을 이용한 Super Resolution 알고리즘)

  • Lee, Doo-Hee;Park, Dae-Hyun;Kim, Yoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • Recently, as the prevalence of high-performance mobile devices and the application of the multimedia content are expanded, Super Resolution (SR) technique which reconstructs low resolution images to high resolution images is becoming important. And in the mobile devices, the development of the SR algorithm considering the operation quantity or memory is required because of using the restricted resources. In this paper, we propose a new single frame fast SR technique suitable for mobile devices. In order to prevent color distortion, we change RGB color domain to HSV color domain and process the brightness information V (Value) considering the characteristics of human visual perception. First, the low resolution image is enlarged by the improved fast back projection considering the noise elimination. And at the same time, the reliable edge map is extracted by using the LoG (Laplacian of Gaussian) filtering. Finally, the high definition picture is reconstructed by using the edge information and the improved back projection result. The proposed technique removes effectually the unnatural artefact which is generated during the super resolution restoration, and the edge information which can be lost is amended and emphasized. The experimental results indicate that the proposed algorithm provides better performance than conventional back projection and interpolation methods.

SDCN: Synchronized Depthwise Separable Convolutional Neural Network for Single Image Super-Resolution

  • Muhammad, Wazir;Hussain, Ayaz;Shah, Syed Ali Raza;Shah, Jalal;Bhutto, Zuhaibuddin;Thaheem, Imdadullah;Ali, Shamshad;Masrour, Salman
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Recently, image super-resolution techniques used in convolutional neural networks (CNN) have led to remarkable performance in the research area of digital image processing applications and computer vision tasks. Convolutional layers stacked on top of each other can design a more complex network architecture, but they also use more memory in terms of the number of parameters and introduce the vanishing gradient problem during training. Furthermore, earlier approaches of single image super-resolution used interpolation technique as a pre-processing stage to upscale the low-resolution image into HR image. The design of these approaches is simple, but not effective and insert the newer unwanted pixels (noises) in the reconstructed HR image. In this paper, authors are propose a novel single image super-resolution architecture based on synchronized depthwise separable convolution with Dense Skip Connection Block (DSCB). In addition, unlike existing SR methods that only rely on single path, but our proposed method used the synchronizes path for generating the SISR image. Extensive quantitative and qualitative experiments show that our method (SDCN) achieves promising improvements than other state-of-the-art methods.

Image Resolution Enhancement by Improved S&A Method using POCS (POCS 이론을 이용한 개선된 S&A 방법에 의한 영상의 화질 향상)

  • Yoon, Soo-Ah;Lee, Tae-Gyoun;Lee, Sang-Heon;Son, Myoung-Kyu;Kim, Duk-Gyoo;Won, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1392-1400
    • /
    • 2011
  • In most digital imaging applications, high-resolution images or videos are usually desired for later image processing and analysis. The image signal obtained from general imaging system occurs image degradation during the process of image acquirement caused by the optics, physical constraints and the atmosphere effects. Super-resolution reconstruction, one of the solution to address this problem, is image reconstruction technique that produces a high-resolution image from several low-resolution frames in video sequences. In this paper, we propose an improved super-resolution method using Projection onto Convex Sets (POCS) method based on Shift & Add (S&A). The image using conventional algorithms is sensitive to noise. To solve this problem, we propose a fusion algorithm of S&A and POCS. Also we solve the problem using BLPF (Butterworth Low-pass Filter) in frequency domain as optical blur. Our method is robust to noise and has sharpness enhancement ability. Experimental results show that the proposed super-resolution method has better resolution enhancement performance than other super-resolution methods.

Light Field Angular Super-Resolution Algorithm Using Dilated Convolutional Neural Network with Residual Network (잔차 신경망과 팽창 합성곱 신경망을 이용한 라이트 필드 각 초해상도 기법)

  • Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1604-1611
    • /
    • 2020
  • Light field image captured by a microlens array-based camera has many limitations in practical use due to its low spatial resolution and angular resolution. High spatial resolution images can be easily acquired with a single image super-resolution technique that has been studied a lot recently. But there is a problem in that high angular resolution images are distorted in the process of using disparity information inherent among images, and thus it is difficult to obtain a high-quality angular resolution image. In this paper, we propose light field angular super-resolution that extracts an initial feature map using an dilated convolutional neural network in order to effectively extract the view difference information inherent among images and generates target image using a residual neural network. The proposed network showed superior performance in PSNR and subjective image quality compared to existing angular super-resolution networks.

Application and Analysis of 2D FRI (Finite Rate of Innovation) Super-resolution Technique in Vision Navigation (영상 항법에서의 2D FRI (Finite Rate of Innovation) Super-resolution 기법 적용 및 분석)

  • Yoo, Kyungwoo;Kong, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In urban area, since multipath and signal attenuations frequently occur due to street trees, street lights and buildings, it is difficult to obtain accurate navigation solution using GPS. As these problems also impact negatively on the INS/GPS coupled system, implementing advanced transportation systems such as autonomous navigation system and Intelligent Transportation System (ITS) become quite hard. For this reason, to alleviate deterioration of navigation system performance in urban area, direction information extraction algorithm using vision system is proposed in this paper. 2D Finite Rate of Innovation (FRI) technique is applied to extract lane edges. The proposed technique is simulated using road images and feasibility of proposed technique is analyzed through the simulation results.