• Title/Summary/Keyword: Super Tall Building

Search Result 130, Processing Time 0.021 seconds

Fire & Life Safety Challenges in Sustainable Tall Building Design

  • Li, Fang;Reiss, Martin
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The movement towards sustainable building design can result in unique fire protection challenges and concerns, especially with super tall buildings in relationship to traditional prescriptive code compliance. Different countries haves different code requirements as well as local best practices and may cause conflict with the design features when designing green buildings. These include, but not limited to green roofs, sprinkler water quality and testing, fire department access and areas of refuge with direct or indirect impact by the perspective code compliance. The solutions to these prescriptive code challenges and fire safety concerns can range from simple alternatives to more detailed engineering performance-based design analyses with good solid practice.

A "Fabric-First" Approach to Sustainable Tall Building Design

  • Oldfield, Philip
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.177-185
    • /
    • 2017
  • This research suggests the most effective way for improving energy efficiency in tall buildings is a "fabric-first" approach. This involves optimizing the performance of the building form and envelope as a first priority, with additional technologies a secondary consideration. The paper explores a specific fabric-first energy standard known as "Passivhaus". Buildings that meet this standard typically use 75% less heating and cooling. The results show tall buildings have an intrinsic advantage in achieving Passivhaus performance, as compared to low-rise buildings, due to their compact form, minimizing heat loss. This means high-rises can meet Passivhaus energy standards with double-glazing and moderate levels of insulation, as compared to other typologies where triple-glazing and super-insulation are commonplace. However, the author also suggests that designers need to develop strategies to minimize overheating in Passivhaus high-rises, and reduce the quantity of glazing typical in high-rise residential buildings, to improve their energy efficiency.

Significant Progress in Construction Equipment of Super High-Rise Building

  • Zhang, Kun;Wang, Hui;Wang, Kaiqiang;Cui, Jian;Chen, Bo;Li, Di
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.243-253
    • /
    • 2018
  • The construction of rapid developing super high-rise buildings constantly faces great challenges and the innovation of construction equipment is a focus of these challenges. In this paper, three new inventions including the operation platform, tower crane and hoist are put forward around two of the most important issues of super high-rise building construction: vertical transportation and operation environment. Study background, composition of the equipment, working principles and key technologies are introduced in sequence. In the end, the paper summarizes the main problems in the further development of construction equipment.

Diagrid Structural System for High-Rise Buildings: Applications of a Simple Stiffness-based Optimized Design

  • Gerasimidis, Simos;Pantidis, Panos;Knickle, Brendan;Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.319-326
    • /
    • 2016
  • The ingenuity of structural engineers in the field of tall and super-tall buildings has led to some of the most remarkable inventions. During this evolution of structural engineering concepts in the last 100 years, the technical challenges that engineers encountered were extraordinary and the advances were unprecedented. However, as the accomplishments of structural engineers are progressing, the desire for taller and safer structures is also increasing. The diagrid structural system is part of this evolving process as it develops a new paradigm for tall building design combining engineering efficiency and new architectural expression. The first appearances of this type of tall buildings have already been constructed and the interest of both engineering and architectural communities is growing mainly due to the many advantages compared to other structural systems. This paper presents a simple approach on optimizing member sizes for the diagonals of steel diagrid tall buildings. The optimizing method is based on minimizing the volume of the diagonal elements of a diagrid structure. The constraints are coming from the stiffness-based design, limiting the tip deflection of the building to widely accepted regulative limits. In addition, the current paper attempts to open the discussion on the important topic of optimization and robustness for tall buildings and also studies the future of the diagrid structural system.

Development of Energy Optimized Geometry Using BIM for Super Tall Office Building in Early Design Stages (BIM을 이용한 건축물 초기 디자인 단계에서 초고층 업무용 건물의 최적 에너지 형태개발)

  • Ryu, Han-Soo;Kim, In-Han;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2011
  • There are many researches to make low-energy building. Lots of them focus on facility systems and insulation performance of building materials. However, not only systematic solutions but also approaches in early design stages are important to reduce energy consumption. Using BIM(Building Information Modelling) is considered as an effective and efficient way to simulate building energy and decide alternatives than traditional energy simulation because BIM based energy simulation makes to reduce much time for energy modeling. This study focuses on development of optimized geometry for super tall office buildings in Seoul, Korea. Specifically, length to width ratio and building orientation are main topics of this study because these two topics are the most basic and preceding factors deciding mass design. In this study, Revit MEP 2011 and Ecotect Analysis 2011 are used to make case models and calculate energy load in early design stages. Energy properties of material abide by Korean Standards for Energy Conservation in Building, Korean Guideline for Energy Conservation in Public Office and ASHRAE Standard in USA. This study presents best length to width ratio of plan and optimized orientation by evaluating the case models. Furthermore, this study suggests what should be considered for each case to decrease energy load.

An Analysis Of Optimized Super Tall Building Tower Crane Selection Which Related With Project Construction Period (프로젝트 공사기간과 연계된 극 초고층 타워크레인 최적화 선정에 관한 연구)

  • Cho, Ji-Hun;Cho, Heung-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.131-139
    • /
    • 2009
  • It is critical to select the appropriate type of tower cranes for the construction of super tall buildings. However the selection is often made based on subjective personal experiences due to the lack of historical and analytical data. As a result, planning mistakes and efficiency errors sometimes occur. This research is to develop a system of hoisting analysis for appropriate tower crane selection and to provide a flexible statistical model based on the Burj Dubai project. In addition, this system hassupporting functions that can estimate the target construction period per floor, and a decision-making construction period computation method which is based on the characteristic of the selected tower cranes.

The Research and Application of Innovative High Efficient Construction Technologies in Super High Rise Steel Structure Building

  • Dai, Lixian;Liao, Biao
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.205-214
    • /
    • 2014
  • The super high rise building construction is characterized by a large quantity of engineering works and structural components, high demanding of construction technology and complex cross operations. As the height of super high rise building increases, the construction difficulties increase, it is challenging the steel structural building construction technology. In this paper, the key technologies in the construction of Chinese modern super high rise steel structure building have been studied. The innovative tower crane supporting frame suspension disassembly technology has been developed to allow the crane supporting frame to turnover in the air without occupying materials stockyard. A new self-elevating platform technique which is capable of striding over structural barriers has been developed. This new technology allows the platform to be self-elevated along variable cross section column with a maximum 600 mm size change. A new automatic submerged arc welding technology has also been developed to ensure the process continuity and quality stability of welding job on the construction site.

Information-based Smart Construction Management of High Rise Building Under the Complex Surrounding Environment in City Core Area

  • Liang, Haoqing;Li, Jian;Song, Weiqing
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2021
  • With the development of urbanization, the increasing of buildings density in urban core areas result in the complexity of construction environment. High-rise landmark building is always preferred in the construction of urban core areas. Super high-rise buildings construction are facing construction management difficulties due to the complex working conditions and enormous building system, especially with the complex surrounding environment of the urban core area, the construction management of super high-rise buildings in the area requires higher, refined and detailed standard. Based on a super high-rise project in a core area of Shanghai which has 370 m building height and 772,643 m2 building area, with complex surrounding environment, narrow construction site and many super-high-altitude crossing works. With the application of BIM technology, the Internet of Things, the LAN communication and other various intelligent mechanical equipment, information management systems, the efficiency and refinement of construction management are improved, ensuring the smooth implementation of the project while effectively controlling the impact on the surrounding environment.

Large-scale Seismic Response Analysis of Super-high-rise Steel Building Considering Soil-structure Interaction using K computer

  • Miyamura, Tomoshi;Akiba, Hiroshi;Hori, Muneo
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In the present study, the preliminary results of a large-scale seismic response analysis of a super-high-rise steel frame considering soil-structure interaction are presented. A seismic response analysis under the excitation of the JR Takatori record of the 1995 Hyogoken-Nanbu earthquake is conducted. Precise meshes of a 31-story super-high-rise steel frame and a soil region, which are constructed completely of hexahedral elements, are generated and combined. The parallel large-scale simulation is performed using K computer, which is one of the fastest supercomputers in the world. The results are visualized using an offline rendering code implemented on K computer, and the feasibility of using a very fine mesh of solid elements is investigated. The computation performance of the analysis code on K computer is also presented.

A study on the fire resistance properties of high strength concrete by incorporation of combined fiber (복합섬유 혼입에 의한 고강도콘크리트의 내화특성에 관한 연구)

  • Kim, Jeong-Jin;Kim, Kwang-Ki;Park, Soon-Jeon;Lee, Joo-Ho;Shin, Jae-Kyung;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.469-470
    • /
    • 2009
  • Recently, so that HSC can secure the fire resistance properties at the time of a fire in super tall building suggested method of combined fiber. Thus, there is the purpose to develop the high fireproof concrete which applied method of combined fiber which can satisfy flowability and the fire resistance properties of HSC for construction of the super tall building.

  • PDF