• Title/Summary/Keyword: Super Resolution Algorithm

Search Result 114, Processing Time 0.024 seconds

Feasibility Study of CNN-based Super-Resolution Algorithm Applied to Low-Resolution CT Images

  • Doo Bin KIM;Mi Jo LEE;Joo Wan HONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, various techniques are being applied through the development of medical AI, and research has been conducted on the application of super-resolution AI models. In this study, evaluate the results of the application of the super-resolution AI model to brain CT as the basic data for future research. Acquiring CT images of the brain, algorithm for brain and bone windowing setting, and the resolution was downscaled to 5 types resolution image based on the original resolution image, and then upscaled to resolution to create an LR image and used for network input with the original imaging. The SRCNN model was applied to each of these images and analyzed using PSNR, SSIM, Loss. As a result of quantitative index analysis, the results were the best at 256×256, the brain and bone window setting PSNR were the same at 33.72, 35.2, and SSIM at 0.98 respectively, and the loss was 0.0004 and 0.0003, respectively, showing relatively excellent performance in the bone window setting CT image. The possibility of future studies aimed image quality and exposure dose is confirmed, and additional studies that need to be verified are also presented, which can be used as basic data for the above studies.

Resolution enhanced integral imaging using super-resolution image reconstruction algorithm (초해상도 영상복원을 이용한 집적영상의 해상도 향상)

  • Hong, Kee-Hoon;Park, Jae-Hyeung;Lee, Byoung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1124-1132
    • /
    • 2009
  • We proposed a new method to improve the resolution of elemental image set in the integral imaging system using super-resolution image reconstruction method. Adjacent elemental images have same image region which is projected from the common area of object. These projected images in the elemental image can be used for low resolution images of super-resolution method. Two methods for resolution improvement of elemental image set using super-resolution method are proposed. One is super-resolution among the elemental image sets and the other is among the elemental images. Simulation results are compared with resolution improved elemental image set using interpolated method.

A Super-Resolution Time Delay Estimation Algorithm for Spread Spectrum Signals (대역 확산 신호를 위한 지연 시간 추정 알고리즘)

  • Shin, Joon-Ho;Myong, Seung-Il;Chang, Eun-Young;Park, Hyung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.119-127
    • /
    • 2012
  • In this paper a super-resolution time delay estimation algorithm is developed for real-time locating systems (RTLSs) that employ a direct-sequence spread spectrum technique, along with its performance analysis in multipath environments. The classical correlation method provides relatively good performance in line-of-sight (LOS) environments but its performance seriously degrades in multipath environments, especially when signals are spaced closer than a PN chip. Therefore we shall develop a super-resolution time delay estimation algorithm that may estimate the time delays of multipath signals even in closely spaced multipath environments using the MUSIC algorithm for direction-of-arrival estimation and analyze its performance by applying the algorithm to the ISO/IEC 24730-2.1 RTLS system. 

Improved Super-Resolution Algorithm using MAP based on Bayesian Approach

  • Jang, Jae-Lyong;Cho, Hyo-Moon;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.35-37
    • /
    • 2007
  • Super resolution using stochastic approach which based on the Bayesian approach is to easy modeling for a priori knowledge. Generally, the Bayesian estimation is used when the posterior probability density function of the original image can be established. In this paper, we introduced the improved MAP algorithm based on Bayesian which is stochastic approach in spatial domain. And we presented the observation model between the HR images and LR images applied with MAP reconstruction method which is one of the major in the SR grid construction. Its test results, which are operation speed, chip size and output high resolution image Quality. are significantly improved.

  • PDF

A Fast Kernel Regression Framework for Video Super-Resolution

  • Yu, Wen-Sen;Wang, Ming-Hui;Chang, Hua-Wen;Chen, Shu-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.232-248
    • /
    • 2014
  • A series of kernel regression (KR) algorithms, such as the classic kernel regression (CKR), the 2- and 3-D steering kernel regression (SKR), have been proposed for image and video super-resolution. In existing KR frameworks, a single algorithm is usually adopted and applied for a whole image/video, regardless of region characteristics. However, their performances and computational efficiencies can differ in regions of different characteristics. To take full advantage of the KR algorithms and avoid their disadvantage, this paper proposes a kernel regression framework for video super-resolution. In this framework, each video frame is first analyzed and divided into three types of regions: flat, non-flat-stationary, and non-flat-moving regions. Then different KR algorithm is selected according to the region type. The CKR and 2-D SKR algorithms are applied to flat and non-flat-stationary regions, respectively. For non-flat-moving regions, this paper proposes a similarity-assisted steering kernel regression (SASKR) algorithm, which can give better performance and higher computational efficiency than the 3-D SKR algorithm. Experimental results demonstrate that the computational efficiency of the proposed framework is greatly improved without apparent degradation in performance.

Super-resolution Algorithm using Discrete Wavelet Transform for Single-image (이산 웨이블릿 변환을 이용한 영상의 초고해상도 기법)

  • Lim, Jong-Myeong;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.344-353
    • /
    • 2012
  • In this paper, we propose a super-resolution algorithm using discrete wavelet transform. In general super-resolution algorithms for single-image, probability based operations have been used for searching high-frequency components. Consequently, the complexity of the algorithm causes the increase of processing time. In the proposed algorithm, we use discrete wavelet transform to find high-frequency sub-bands. We perform inverse discrete wavelet transform using input image and high-frequency sub-bands of the same resolution as the input image which are obtained by performing discrete wavelet transform without down-sampling and then we obtain image with high-resolution. In the proposed algorithm, we use the down-sampled version of the original image ($512{\times}512$) as a test image ($256{\times}256$) to compare the performance of algorithms. Through experimental results, we confirm the improved efficiency of the proposed algorithm comparing with conventional interpolation algorithms and also decreased processing time comparing the probability based operations.

Fast Content Adaptive Interpolation Algorithm Using One-Dimensional Patch-Based Learning (일차원 패치 학습을 이용한 고속 내용 기반 보간 기법)

  • Kang, Young-Uk;Jeong, Shin-Cheol;Song, Byung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.54-63
    • /
    • 2011
  • This paper proposes a fast learning-based interpolation algorithm to up-scale an input low-resolution image into a high-resolution image. In conventional learning-based super-resolution, a certain relationship between low-resolution and high-resolution images is learned from various training images and a specific high frequency synthesis information is derived. And then, an arbitrary low resolution image can be super-resolved using the high frequency synthesis information. However, such super-resolution algorithms require heavy memory space to store huge synthesis information as well as significant computation due to two-dimensional matching process. In order to mitigate this problem, this paper presents one-dimensional patch-based learning and synthesis. So, we can noticeably reduce memory cost and computational complexity. Simulation results show that the proposed algorithm provides higher PSNR and SSIM of about 0.7dB and 0.01 on average, respectively than conventional bicubic interpolation algorithm.

Automated Algorithm for Super Resolution(SR) using Satellite Images (위성영상을 이용한 Super Resolution(SR)을 위한 자동화 알고리즘)

  • Lee, S-Ra-El;Ko, Kyung-Sik;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.209-216
    • /
    • 2018
  • High-resolution satellite imagery is used in diverse fields such as meteorological observation, topography observation, remote sensing (RS), military facility monitoring and protection of cultural heritage. In satellite imagery, low-resolution imagery can take place depending on the conditions of hardware (e.g., optical system, satellite operation altitude, image sensor, etc.) even though the images were obtained from the same satellite imaging system. Once a satellite is launched, the adjustment of the imaging system cannot be done to improve the resolution of the degraded images. Therefore, there should be a way to improve resolution, using the satellite imagery. In this study, a super resolution (SR) algorithm was adopted to improve resolution, using such low-resolution satellite imagery. The SR algorithm is an algorithm which enhances image resolution by matching multiple low-resolution images. In satellite imagery, however, it is difficult to get several images on the same region. To take care of this problem, this study performed the SR algorithm by calibrating geometric changes on images after applying automatic extraction of feature points and projection transform. As a result, a clear edge was found just like the SR results in which feature points were manually obtained.

Multi-Frame-Based Super Resolution Algorithm by Using Motion Vector Normalization and Edge Pattern Analysis (움직임 벡터의 정규화 및 에지의 패턴 분석을 이용한 복수 영상 기반 초해상도 영상 생성 기법)

  • Kwon, Soon-Chan;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.2
    • /
    • pp.164-173
    • /
    • 2013
  • In this paper, we propose multi-frame based super resolution algorithm by using motion vector normalization and edge pattern analysis. Existing algorithms have constraints of sub-pixel motion and global translation between frames. Thus, applying of algorithms is limited. And single-frame based super resolution algorithm by using discrete wavelet transform which robust to these problems is proposed but it has another problem that quantity of information for interpolation is limited. To solve these problems, we propose motion vector normalization and edge pattern analysis for 2*2 block motion estimation. The experimental results show that the proposed algorithm has better performance than other conventional algorithms.

Single Image Super-Resolution Using CARDB Based on Iterative Up-Down Sampling Architecture (CARDB를 이용한 반복적인 업-다운 샘플링 네트워크 기반의 단일 영상 초해상도 복원)

  • Kim, Ingu;Yu, Songhyun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.242-251
    • /
    • 2020
  • Recently, many deep convolutional neural networks for image super-resolution have been studied. Existing deep learning-based super-resolution algorithms are architecture that up-samples the resolution at the end of the network. The post-upsampling architecture has an inefficient structure at large scaling factor result of predicting a lot of information for mapping from low-resolution to high-resolution at once. In this paper, we propose a single image super-resolution using Channel Attention Residual Dense Block based on an iterative up-down sampling architecture. The proposed algorithm efficiently predicts the mapping relationship between low-resolution and high-resolution, and shows up to 0.14dB performance improvement and enhanced subjective image quality compared to the existing algorithm at large scaling factor result.