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Abstract 
 

A series of kernel regression (KR) algorithms, such as the classic kernel regression (CKR), the 

2- and 3-D steering kernel regression (SKR), have been proposed for image and video 

super-resolution. In existing KR frameworks, a single algorithm is usually adopted and 

applied for a whole image/video, regardless of region characteristics. However, their 

performances and computational efficiencies can differ in regions of different characteristics. 

To take full advantage of the KR algorithms and avoid their disadvantage, this paper proposes 

a kernel regression framework for video super-resolution. In this framework, each video frame 

is first analyzed and divided into three types of regions: flat, non-flat-stationary, and 

non-flat-moving regions. Then different KR algorithm is selected according to the region type. 

The CKR and 2-D SKR algorithms are applied to flat and non-flat-stationary regions, 

respectively. For non-flat-moving regions, this paper proposes a similarity-assisted steering 

kernel regression (SASKR) algorithm, which can give better performance and higher 

computational efficiency than the 3-D SKR algorithm. Experimental results demonstrate that 

the computational efficiency of the proposed framework is greatly improved without apparent 

degradation in performance. 
 

 

Keywords: video super-resolution, kernel regression framework, Similarity-assisted 

Steering Kernel Regression 
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1. Introduction 

Super-resolution (SR) is a process of reconstructing a high-resolution (HR) image from 

multiple low-resolution (LR) inputs. Its basic idea is to enhance the resolution of reference 

image by making full use of the information contained in both reference and auxiliary images. 

A variety of algorithms have been presented to solve the SR problem. The frequency domain 

method was firstly introduced by Tsai and Huang [1], and extended by their successors [2][3]. 

However, the performance of the frequency domain methods is usually limited by the global 

translational motion and spatially invariant degradation. Thus, a variety of the spatial domain 

SR methods have been proposed. The iteration back-projection (IBP) algorithm [4] yields a 

HR image by iteratively back-projecting the error between the simulated LR images and the 

observed ones. The maximum a posteriori (MAP) method utilizes the spatial domain 

observation model and the prior knowledge of the target HR image to estimate the target HR 

image under a Bayesian theorem framework [5][6][7][8][9]. The projection on convex sets 

(POCS) method tends to incorporate the prior knowledge of the target HR image into the 

convex constraint sets and to restrict the SR solution to be a member of the convex sets 

[10][11]. An extensive review of the SR methods can be seen in [12] [13]. 

Although the SR technique has been extensively studied in the past three decades, the 

super-resolution on general video sequences still remains an open problem. In existing video 

super-resolution (VSR) algorithms, either the motion models are oversimplified, or the 

computational efficiency is unsatisfactory. Several VSR algorithms presented in [14][15][16] 

limit their motion model to the case of translational motion. As a result, these algorithms 

cannot achieve good performance on general video sequences with arbitrary motion model. 

The fundamental difficulty for the super-resolution on general video sequences is to provide 

accurate subpixel motion estimations. Recent progresses have focused on two types of VSR 

methods. One type is simultaneous VSR method. Keller et al.[17] presented a VSR algorithm, 

which simultaneously estimates a HR sequence and its motion field via the calculus of 

variations. Liu et al. [18] proposed an adaptive VSR algorithm, which simiultaneously 

estimates HR frame, motion field, blur kernel and noise level in a Bayesian framework. 

However, their performance is affected by the accuracy of optical flow estimation. Another 

type is non-motion-estimation-based VSR method. Danielyan et al. [19] created a VSR 

algorithm by extending the block-matching 3-D filter, in which the explicit motion estimation 

is avoided by classifying the image patches using block matching.  Protter et al. [20] 

generalized the non-local means (NLM) algorithm (a denoising algorithm) to enhance the 

resolution of general video sequences without explicit motion estimation. Takeda et al. [21] 

extended the 2-D steering kernel regression (SKR) approach[22] to 3-D for video 

super-resolution. With similar ideas, K.Zhang et al.[23] extended the 2-D normalized 

convolution approach to 3-D case for video super-resolution. H.Zhang et al.[24][25] presented 

a nonlocal kernel regression (NL-KR) framework and applied it to SR reconstruction. The 

NL-KR framework exploits both the nonlocal self-similarity and local structure regularity for 

a more reliable and robust estimation. Their works provide new thinking and methods to 

achieve super-resolution on general video sequences. However, these approaches share a 

common defect: low computational efficiency. 

Takeda et al. [21][22] proposed a series of kernel regression (KR) algorithms for image 

and video super-resolution, such as the classic kernel regression (CKR), the 2- and 3-D 

steering kernel regression. The CKR algorithm is computationally efficient but its 
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performance on the edge regions is poor. The 2- and 3-D SKR algorithms improve the 

performance on the edge regions by exploiting 2- and 3-D local radiometric structure 

information. However, the use of more information leads to higher computational cost. In 

order to improve computational efficiency, this paper proposes a fast kernel regression 

framework for video super-resolution, which takes full advantage of three KR algorithms and 

avoids their disadvantage. In this framework, each video frame is first analyzed and divided 

into three types of regions: flat, non-flat-stationary, and non-flat-moving regions. Then 

different KR algorithm is selected according to the region type. The CKR and 2-D SKR 

algorithms are applied to flat and non-flat-stationary regions, respectively. For 

non-flat-moving regions, this paper proposes a similarity-assisted steering kernel regression 

(SASKR) algorithm, which is an extension of the NL-KR algorithm. The SASKR algorithm 

exploits the supplementary information from local spatial and temporal orientations separately. 

It consists of two parts: the local SKR and non-local SKR terms. The local SKR term exploits 

the supplementary information contained in the local spatial orientations while the non-local 

SKR term makes use of the supplementary information contained in the local temporal 

orientation. The SASKR algorithm can provide better performance and higher computational 

efficiency than the 3-D SKR algorithm. 

The remainder of this paper is organized as follows. Section 2 briefly reviews several KR 

algorithms and presents a similarity-assisted steering kernel regression algorithm. A fast 

kernel regression framework for video super-resolution is described in Section 3 and 

experimental results are illustrated in Section 4. Finally, conclusions are summarized in 

Section 5. 

2. Similarity-assisted Steering Kernel Regression Algorithm 

In this section, a brief technical review of several KR algorithms is firstly presented. Then an 

extension of non-local kernel regression algorithm, called similarity-assisted steering kernel 

regression, is proposed. 

2.1 Classic Kernel Regression Algorithm for Image Super-resolution  

The classic kernel regression (CKR) algorithm usually performs in a local manner, i.e., a pixel 

value of interest is estimated from the samples within a small neighborhood of that pixel. For 

two dimensional cases, the regression model is 

 

iii nzy  )(x       pi ,,1                                                                (1) 

 

where iy is a noise sample at position T

iii xx ],[ 2,1,x ( 1,ix  and 2,ix  are spatial 

coordinates), )(z is a regression function, in is a zero mean additive Gaussian noise, and p is 

the total number of samples within the neighborhood. The generalization of kernel regression 

estimate )(ˆ Xz  is given by solving the following weighted least squares problem [21]. 

 

 )()(minargˆ ΦAYKΦAYA
A
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nα ( Nn 0 ) is the regression coefficient, and 0α is the desired pixel value 

estimation )(ˆ Xz . Φ  is the regression base, )(vect is an operator that extracts the 

lower-triangular part of a symmetric matrix and lexicographically orders it into a column 

vector, and )( xx ik  is a kernel function which represents a weight for each sample iy . The 

Gaussian kernel function is defined as 
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where h  is the global smoothing parameter. 

Fig. 1 illustrates how the CKR algorithm is applied to image super-resolution. The input 

image is firstly upsampled into the HR grid. Then each missing pixel (denoted as white circle) 

value is estimated from the samples (denoted as black circles) within a small neighborhood of 

that pixel. The CKR algorithm is simple and computationally efficient. However, its 

performance on the edge regions is poor.  

 
Fig. 1.  The classic kernel regression for image super-resolution 

 

2.2 2-D Steering Kernel Regression Algorithm  

The 2-D steering kernel regression (SKR) algorithm is proposed to improve the performance 

on the edge regions [21]. The 2-D SKR algorithm defines its kernel function as 
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where 
iC is estimated as the covariance matrix of gradients of 2-D neighboring pixels. 
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where )(1 z and )(2 z  are the first-order derivative along the directions of two coordinate axes, 

respectively. 
jx~ ( mj 1 ) is a sample position that fall into the analysis window centered 

on ix , and m is the total number of samples within the analysis window. The 2-D SKR 

algorithm captures the local radiometric structures and feeds the structure information to the 

kernel function. Thus, this algorithm gives better performance on the edge regions but lower 

computational efficiency than the CKR algorithm.  

In order to process video super-resolution, Takeda et al. [21] generalized the 2-D SKR to 

the 3-D SKR algorithm. The 3-D SKR algorithm exploits the supplementary information 

contained in local spatial and temporal orientations to achieve good video super-resolution 

results. However, the 3-D SKR algorithm has an inherent limit: the size of the spatiotemporal 

neighborhood must be small. Thus, many auxiliary frames, which contain supplementary 

information but are far away from the reference frame, can not be exploited. 

2.3 Similarity-assisted Steering Kernel Regression Algorithm  

 

t frame t+1 framet-1 frame

… …

The pixel of interest
The similar pixels

The similar pixels
Local patch

Non-local similar patches

Non-local similar patches

… …

The similar pixels

Non-local similar patches

 
Fig. 2. The NL-KR algorithm for image and video restoration 

In proposed framework, a similarity-assisted steering kernel regression (SASKR) algorithm is 

introduced as a replacement to the 3-D SKR algorithm. The SASKR algorithm is similar with 

the NL-KR algorithm. As shown in Fig. 2, the NL-KR algorithm makes use of  the local patch 

and the non-local similar patches to estimate a pixel value of interest via kernel regression 

method. The  NL-KR algorithm can give a more reliable and robust estimation. However, it is 

computationally heavy. the SASKR algorithm has two advantages over NL-KR algorithm. 

Firstly, the SASKR algorithm improves the computational efficiency. As shown in Fig. 3, the 

SASKR algorithm exploits only similar pixels along motion trajectory instead of all non-local 

similar pixels. Thus, the SASKR algorithm can achieve higher computational efficiency. 

Secondly, the SASKR algorithm adopts the SKR technique in the local and non-local terms, 

which can give better performance.  
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Fig. 3. The similarity-assisted steering kernel regression algorithm for video super-resolution 

 

Next, a detailed description of the SASKR algorithm is given. As shown in Fig. 3, the pixel 

of interest is estimated from the sample values within the local and non-local neighborhoods 

via 2-D SKR technique. A local neighborhood is a region centered on the pixel of interest and 

a non-local neighborhood is a region centered on each similar pixel along motion trajectory. 

Mathematically, the SASKR algorithm can be formulated into an optimization problem: 
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The Eq.(5) includes two parts: the local SKR and non-local SKR terms. The proposed 

algorithm exploits the supplementary information contained in the spatial and temporal 

orientations by the two terms. The first element of the regression coefficients Â is taken as an 

estimate value of the pixel of interest. 
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By the above analysis, it can be seen that the SASKR algorithm has the capability to 

exploit all the auxiliary frames containing supplementary information. Thus, it breaks the 

inherent limit of the 3-D SKR algorithm. The experimental results in Section 4.2 verify the 

effectiveness of the SASKR algorithm. As we can see, the SASKR algorithm gives higher 

PSNR values and offers better visual effect than the 3-D SKR. 
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3. The Fast Kernel Regression Framework for Video Super-Resolution 

It can be seen that the performance and computational efficiency of KR algorithms will be 

different when applied to regions of different characteristics within a single video frame. The 

CKR algorithm has high computational efficiency but its performance on the edge regions is 

poor; The SKR algorithm gives better performance on the edge regions but lower 

computational efficiency. The SASKR algorithm offers the best performance but the lowest 

computational efficiency. On the basis of the consideration of performance and computational 

efficiency, this paper proposes a fast kernel regression framework, in which the KR algorithms 

with different computational complexity are automatically selected for estimating the pixels in 

different regions. 

The chart flow of the proposed framework is shown in Fig. 4. The estimation process of 

each pixel is divided into two stages. 

Input video 

frames

The 2-D SKR 

algorithm
Result 

HR video

non-flat-stationary 

region

Flat region

The first stage

The CKR 

algorithm

The SASKR 

 algorithm

The second stage

non-flat-moving 

region

For each pixel, 

a 2-D local 

neighborhood is 

extracted

 

Fig. 4. A flow chart of the proposed framework 

 

In the first stage, a 2-D local neighborhood of the pixel of interest is extracted and the region 

type of the local neighborhood is analyzed. The regions in video frames are classified into 

three categories: flat, non-flat-stationary, and non-flat-moving regions. The analysis process is 

divided into two steps. 

The first step determines whether the region type of the local neighborhood is flat region by 

analyzing the 2-D local radiometric structure. As described previously, the local radiometric 

structure can be captured by the covariance matrix of the spatial gradient vectors within the 

local neighborhood. The eigenvalues (
1 and

2 ) of the covariance matrix are a measurement 

of the gradient strength in two perpendicular directions. Since the constant region can be 

characterized by 021   , the smoothness of a region , which is defined in [26], can be 

adopted for distinguishing between the flat and non-flat region. 
 

21                                                                 (8) 

 

The region is a flat region when   is less than a certain threshold
 . 

If the region is not a flat region, the second step further determines whether the local region 

has movement between video frames. This can be done by many methods. In this paper, a 
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simple method is adopted, which is based on the intensity difference between the local 

neighborhood 
0Y and the corresponding region 

1Y in the same position of next or previous 

frame. The intensity difference is defined as follow: 
 

10 YY PD                                                                  (9) 

 

Ideally, the region without movement can be characterized by 0PD . However, the 

intensity difference is easily affected by noise. So a certain threshold 
PD  is predefined 

according to the variance of the noise. The region is a non-flat-stationary region when PD is 

less than
PD . Otherwise the region is a non-flat-moving region. 

In the second stage, a suitable KR algorithm is selected to estimate the pixel of interest 

according to the region type of its local neighborhood. The CKR algorithm is used    to 

estimate the value of the pixels in the flat regions aiming to improve computational efficiency. 

Its implementation is described in subsection 2.1. The 2-D SKR algorithm is used to estimate 

the value of the pixels in the non-flat-stationary regions aiming to improve the performance on 

the edge regions. The implementation of this algorithm is divided into three steps. First, the 

gradients (  Tzz )(),( 21  ), which are at all the sample positions  p

ii 1
x  within the local 

neighborhood, are estimated. This is so-called “pilot estimate” in [21]. Second, the covariance 

matrix
iC of each sample iy  is estimated from the initial “pilot”. Finally, the 2-D SKR 

algorithm is applied to estimate the pixel of interest from the local neighborhood (which is 

embedded in a HR grid). The SASKR algorithm is used to estimate the value of the pixels in 

the non-flat-moving regions aiming to make full use of the supplementary information 

contained in local spatial and temporal orientations. The implementing steps of this algorithm 

are similar to the 2-D SKR algorithm. But the SASKR algorithm exploits the samples within 

both the local and non-local neighborhood. 

4. Experimental Results 

Two sets of experiments are carried out in this section. First, in Section 4.1, the computational 

efficiency of the proposed framework is validated by presenting the computational times of 

processing several real-world video sequences. Second, in Section 4.2, the performance of the 

proposed framework is examined by presenting the obtained results of super resolving several 

video sequences. 

In all experiments, the degraded videos are obtained by the following manner: the original 

videos are blurred using a 33 uniform point spread function (PSF), spatially downsampled 

by a factor of 3:1 in the horizontal and vertical directions, and then contaminated by an 

additive white Gaussian noise with standard deviation 2. The all experiments are performed 

using MATLAB on Intel Core i7-3770 CPU 3.4GHz Microsoft windows 7 platform. 

4.1 Computational Efficiency  

In order to validate the computational efficiency of the proposed framework, three 

experiments are implemented. In first experiment, six real-world videos, namely, 

“Foreman”(288×351×30), “gsaleman” (288×351×30), “Miss America” (270×189×30), 

“Suzie” (240×351×30), “gbus” (288×351×30), “coastguard”(144×174×30), are used as 

original videos. The proposed framework is compared with the 3-D SKR and SASKR 

algorithms. The implementation code of the 3-D SKR algorithm is downloaded from the 
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author’s website. The parameter setting of the 3-D SKR algorithm is the same as the literature 

[21]. As for the parameter settings of the SASKR algorithm and the proposed framework, the 

value of the global smoothing parameter h is set to 1.5; the size of the local neighborhood is 

fixed to 77 ;  the support of the similarity searching is fixed to be  a 111515  local cubicle 

centered on the pixel of interest ;  the thresholds 10  and 20PD . 

The computational times of three comparison algorithms for whole video (30 frames) are 

summarized in Table 1. As we can see, the speed of the proposed framework is much faster 

than other two algorithms. The main reason is that the KR algorithms with different 

computational complexity are applied to estimate the pixels in the regions of different 

categories. The results indicate that the proposed framework greatly improves the 

computational efficiency. Note that the improvement of computational efficiency of different 

videos with same size and resolution is also different. For instance, the computational time of 

“Foreman” sequence is 434.84 seconds, whereas that of “gsalesman” sequence is 82.93 second. 

The main reason is that the number of the regions of different categories contained in each 

video sequence is different. In addition, the speed of the SASKR algorithm also is faster than 

the 3-D SKR. The increase of computational speed of the SAPSKR algorithm is due to the 

decrease of the computational cost of the kernel function. The kernel function of the SASKR 

algorithm is 2-D instead of 3-D.  

 
Table 1. The computaional times (second) of three comparison algorithms for six videos  

Video name  3-D SKR  SASKR  The proposed 

framework 

Foreman  1.46E+04 1.17E+04 434.84 

gsalesman  3.68E+04 3.03E+04 82.93 

Miss America 1.53E+04 1.38E+04 11.97 

Suzie 1.35E+04 1.18E+04 20.27 

gbus 3.98E+04 3.30E+04 346.07 

coastguard 1.40E+03 1.13E+03 5.92 

       

   In second experiment, The proposed framework is compared with some other 

state-of-the-art methods[18][20]. Since the codes for these methods are not currently available 

publicly, only  limited comparisons are possible. Under same experimental conditions, the 

method of [20] requires approximately 20 seconds per frame when super resolving the “Suzie” 

sequences with high-resolution frame size of 250210 pixels, whereas the proposed 

framework needs only 0.5146 seconds.  The C++ implementation of the method in [18] takes 

about two hours when super resolving a 480720 frame using 30 adjacent frames at an 

up-sampling factor of 4, whereas the MATLAB implementation of the proposed framework 

only takes 3.7308 seconds. 

The third experiment is to study how the computational efficiency of the proposed 

framework is sensitive to the scene in the videos. In this experiment, the whole “gbus” 

sequence(288×351×150) is used as original videos.The whole “gbus” sequence includes 

some segments in which the scene changes frequently. A cropped sequence is obtained by 

taking the top 30 frames of the whole sequence. The scene in the cropped sequence  changes 

slowly. The average computational time on the whole sequence is 31.664 second per frame, 

whereas the average computational time on the cropped sequence   is  11.5359 second per 

frame. therefore, the computational effciency of the proposed framework is parameter 

sensitive to the scene in the videos. The main reason is that the method of determining the 
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region types in the proposed framework is simple. The propblem can be solved by adopting 

some more complex methods of determining the region types. 

4.2 Performance 

In this section, the performance of the proposed framework is examined. Performance 

comparisons are implemented with related state-of-the-art algorithms. For a fair comparison, 

the TV-based deblurring algorithm [27] is used for image deblurring. The first experiment is to 

compare the proposed framework with the 3-D SKR and SASKR algorithms on six video 

sequences. Both the objective and subjective quality assessments are adopted to evaluate 

different algorithms. For the objective quality assessment, the Peak-Signal-to-Noise Ratio 

(PSNR) and the Structural Similarity (SSIM) index [28] are adopted as the evaluation metric. 

The graphs in Fig.5-10 illustrate the frame-by-frame PSNR values of reconstructed videos by 

three comparison algorithms. The average PSNR values are summarized in Table 2 and the 

average SSIM values are summarized in Table 3. As can be seen, the performance of three 

algorithms is very close. 

 
Fig. 5. PSNR values of each reconstructed HR frame by three algorithms for the Foreman sequences 
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Fig. 6. PSNR values of each reconstructed HR frame by three algorithms for the Miss America 

sequences 

 
Fig. 7. PSNR values of each reconstructed HR frame by three algorithms for the gsalesman sequences 
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Fig. 8. PSNR values of each reconstructed HR frame by three algorithms for the Suzie sequences 

 

 
Fig. 9. PSNR values of each reconstructed HR frame by three algorithms for the gbus sequences 
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Fig. 10. PSNR values of each reconstructed HR frame by three algorithms for the coastguard 

sequences 
Table 2. The average PSNR values for six reconstructed HR videos 

Video name  3-D SKR  SASKR  The proposed 

framework 

Foreman  32.6058 32.7842 32.4128 

Miss America 35.4970 35.7398 35.5566 

gsalesman  25.9132 26.4817 26.3850 

Suzie 31.5282 31.9476 31.5716 

gbus 21.2714 21.7230 21.6525 

coastguard 23.4519 23.7368 23.5856 
 

Table 3. The average SSIM values for six reconstructed HR videos 

Video name  3-D SKR  SASKR  The proposed 

framework 

Foreman  0.8869 0.8891 0.8839 

Miss America 0.9141 0.9153 0.9148 

gsalesman  0.7191 0.7565 0.7522 

Suzie 0.8342 0.8481 0.8371 

gbus 0.6123 0.6361 0.6793 

coastguard 0.5639 0.5916 0.6035 
 

 

As for the subjective quality assessment, the assessment is obtained from human visual 

system. The SR results on Foreman and MissAmerica sequences are shown in Fig. 11 for 

visual comparison. The difference between the reconstructed frames by three algorithms is 

also not apparent.  
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The proposed 

 framework 

   

   

(a) 

   

   

(b) 

 

Fig. 11. Samples of the reconstructed frames by three algorithms. (a) foreman, (b) MissAmerica , 

the first column is the results of the 3-D SKR algorithm, the second column is the results of the  

SASKR algorithm, and the third column is the results of the proposed framework 

 

The second experiment is to compare the proposed framework with some other 

state-of-the-art methods such as BM3D [19], GNLM [20], NL-KR [25]. Similarly, since the 

codes for these methods are not currently available, only limited comparisons are implemented. 

Here, the PSNR and SSIM index are used for objective evaluation. The average PSNR values 

are summarized in Table 4 and the average SSIM values are summarized in Table 5. Note that 

the results from three comparison algorithms are cited directly from [25]. Since different 

Foreman sequences are adopted, the results of the proposed framework on Foreman sequences 

are different from Table 2 and Table 3.  For a fair comparison, Foreman sequences being used 

in [20] are adopted in this experiment, which are size of 288×312×30. As we can see from 

Table 4 and Table 5, the performance of the proposed framework is slightly decreased as 

compared with the BM3D and NL-KR algorithms. 
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Table 4. The average PSNR values for two reconstructed HR videos 

Video name  BM3D GNLM  NL-KR  The proposed 

framework 

Foreman  33.50 32.82 34.01 33.1040 

Miss America 36.30 35.35 36.44 35.5566 

 

Table 5. The average SSIM values for two reconstructed HR videos 

Video name  BM3D GNLM  NL-KR  The proposed 

framework 

Foreman  – 0.9025 0.9120 0.9062 

Miss America – 0.9136 0.9164 0.9148 

 

In conclusion, although the performance of the proposed framework is slightly degraded as 

compared with the BM3D and NL-KR algorithms, its computational efficiency is greatly 

improved. Therefore, it is believe that the proposed framework strikes a good balance on the 

computational efficiency and performance. 

5. Conclusion 

A fast kernel regression framework is proposed in this paper. In this framework, the video 

regions are classified into three categories: flat, non-flat-stationary, and non-flat-moving 

regions. The KR algorithms with different computational complexity can be adaptively 

selected for estimating each high-resolution pixel in different regions. Thus, the proposed 

framework makes the best use of the advantages of different KR algorithms and greatly 

improves the computational efficiency. In addition, a similarity-assisted steering kernel 

regression algorithm is proposed for estimating the pixels in the non-flat-moving regions. The 

SASKR can give better performance and higher computational efficiency than the 3-D SKR 

algorithm. 
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