• 제목/요약/키워드: Sun tracking system

검색결과 335건 처리시간 0.024초

퍼지 PID와 2축 센서형 태양 추적 장치를 이용한 태양광 추적 반사 장치 구현에 관한 연구 (A Study on the Implementation of Sunlight Tracking and Reflexing System Using Fuzzy Pm and 2-Axis Sensor Sun Tracker)

  • 안정훈;김종화;김태훈;김대영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.165-165
    • /
    • 2000
  • The sunlight tracking and reflexing system can be divided into two parts. One is a sunlight tracking system and the other is a sunlight reflexing system. The sunlight tracking system detects an azimuth angie and an elevation angle of the sun using 2-axis sensor sun tracker. The sunlight reflexing system controls a reflection mirror to be reflected a sunlight at the target area after getting the azimuth angle and the elevation angle of the sun from the sunlight tracking system. We applied the fuzzy PID controller to control the reflexing mirror.

  • PDF

하이브리드 광 추적방식의 태양광 발전 시스템 (Solar Power Generation System with Hybrid Sun Tracker)

  • 이재민;김용
    • 한국산업융합학회 논문집
    • /
    • 제13권2호
    • /
    • pp.69-75
    • /
    • 2010
  • This paper describes the design and implementation of hybrid sun tracking solar power generation system designed by combining astronomical data with optical tracking mechanism. The advantages of proposed power generation system are small amounts of calculation for tracking operations and enhancement of 40% of power generation at best. This system is able to track toward optimal position for maximum sun-lights under scattered lights due to clouds. The performance of implemented power generation system is confirmed by field experiments.

  • PDF

이동형 태양 추적 시스템에 관한 연구 (A Study on a Mobile Sun Tracking System)

  • 최익;최주엽
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.38-43
    • /
    • 2009
  • In this paper. a prototype of a mobile Sun tracking system is proposed. The proposed system uses 2-axis tilt sensor and 3-axis magnetic sensor to measure the orientation and the posture of the system according to the horizontal system of coordinates, which are used to compensate the slope effects. Then through astronomical calculation using the time and position information obtained by GPS sensor the azimuth and altitude of the Sun from that location is calculated. The position of the Sun is converted to that of the mobile Sun tracking system coordinates and used to control A-axis and C-axis of the system.

One sensor방식의 추적식 PV System (The Tracking Photovoltaic System by One sensor Type)

  • 고재홍;박정민
    • 한국산학기술학회논문지
    • /
    • 제13권10호
    • /
    • pp.4733-4739
    • /
    • 2012
  • 본 논문에서는 태양과 태양전지 모듈이 법선을 이루도록 기존에 태양의 방위각 및 고도각을 제어하는 양축 추적시스템에 2개의 센서를 사용하였던 Double-sensor방식에서 1개의 센서로 방위각 및 고도각을 제어할 수 있는 One-sensor방식의 양축 추적시스템을 제안하였다. 그리고 제안한 추적시스템을 제작하여 시스템의 실제 운전을 실행하였다. 제안한 추적시스템은 1개의 센서를 이용하여 태양이 항상 법선을 이루면서 태양전지 모듈에 입사되게 제어하기 위해 방위각과 고도각을 제어하는 양축 추적시스템이다. 실험결과 가장 효율적인 운전과 불필요한 구동부의 동작을 방지하여 전력소모를 감소할 수 있었으며 고정식에 비해 본 논문에서 제안한 One-sensor방식의 양축 추적시스템이 약 23[%]의 발전효율이 증가함을 확인 할 수 있었다. 태양을 추적하여 더 많은 햇빛을 받게 하여 태양전지의 효율을 높이기 위하여 행해진 추적장치는 대형 방식에 많은 연구가 진행되어 왔다. 따라서 본 논문의 태양위치추적의 모니터링 시스템을 구축하여 지속적인 발전효율에 대한 실용화 연구를 통해 태양광발전시스템 보급에 큰 역할을 할 것이라 기대된다.

Development of a Novel Tracking System for Photovoltaic Efficiency in Low Level Radiation

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.405-411
    • /
    • 2010
  • This paper proposes a novel tracking algorithm considering radiation to improve the power of a photovoltaic (PV) tracking system. The sensor method used in a conventional PV plant is unable to track the sun's exact position when the intensity of solar radiation is low. It also has the problem of malfunctions in the tracking system due to rapid changes in the climate. The program method generates power loss due to unnecessary operation of the tracking system because it is not adapted to various weather conditions. This tracking system does not increase the power above that of a power of tracking system fixed at a specific position due to these problems. To reduce the power loss, this paper proposes a novel control algorithm for a tracking system and proves the validity of the proposed control algorithm through a comparison with the conventional PV tracking method.

태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발 (Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation)

  • 최정식;고재섭;정동화
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.

이동형 시스템에 구현이 가능한 태양 추적 시스템에 관한 연구 (A Study on Implementable Sun Tracking Algorithm for Mobile Systems)

  • 최주엽;최익;송승호;안진웅;이동하
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1169-1174
    • /
    • 2009
  • In this paper, a prototype of implementable Sun tracking algorithm for mobile systems powered by alternative energy is proposed. The proposed system uses 2-axis tilt sensor and 3-axis magnetic sensor to measure orientation and posture of the system according to the horizon coordinates system, which are used to compensate tilt effects. Then through astronomical calculation using the present time and position informations obtained from GPS sensors, the calculated azimuth and altitude of the Sun in that location. The position of the Sun is converted to that of the mobile Sun tracking system coordinates and used to control A-axis and C-axis of the system.

A sun tracking control system using two DOF active sensor array

  • Ha, Yun-Su;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1310-1317
    • /
    • 2014
  • In our daily life, the need of energy increases day by day. However, the amount of natural resources on the earth is limited and thus gaining renewable energy as an energy resource is one of the important and urgent problems. Solar energy is one of the most popular available energy sources that can be converted into electricity by using solar panels. In order for solar panels to produce maximal output power, the incident angle of the sunlight needs to be persistently perpendicular to the solar panel. By the way, most of the solar panels are installed at fixed position and direction. Therefore, as the sun's position changes, it is impossible to produce maximal output power inevitably. To improve this problem, in this paper, a sun tracking system using two degree-of-freedom (DOF) active sensor array is proposed so that the solar panel may always direct sunlight perpendicularly. And also a series of software, such as a search mode and a holding mode, which can control the developed sun tracking system is developed. Several experiments using the implemented sun tracking system are executed and the effectiveness of the system is verified from the experimental results.

A Study of an Implementable Sun Tracking Algorithm for Portable Systems

  • Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;An, Jinung;Lee, Dong-Ha;Kim, Jung-Won
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1051-1057
    • /
    • 2013
  • This paper proposes an implementable sun tracking algorithm for portable systems powered by alternative energy sources. The proposed system uses a 2-axis tilt sensor and a 3-axis magnetic sensor to measure the orientation and posture of the system, according to a horizon coordinates system, and compensate for tilt effects. Then, through an astronomical calculation, using the present time and position information obtained from GPS sensors, the azimuth and altitude of the sun in that location is calculated and converted to portable sun tracking system coordinates and used to control the A- and C-axes of the system.

확장칼만필터에 의하여 학습된 다층뉴럴네트워크를 이용한 헬리오스타트 태양추적오차의 모델링 (Modeling of Heliostat Sun Tracking Error Using Multilayered Neural Network Trained by the Extended Kalman Filter)

  • 이상은;박영칠
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.711-719
    • /
    • 2010
  • Heliostat, as a concentrator reflecting the incident solar energy to the receiver located at the tower, is the most important system in the tower-type solar thermal power plant, since it determines the efficiency and performance of solar thermal plower plant. Thus, a good sun tracking ability as well as its good optical property are required. In this paper, we propose a method to compensate the heliostat sun tracking error. We first model the sun tracking error, which could be measured using BCS (Beam Characterization System), by multilayered neural network. Then the extended Kalman filter was employed to train the neural network. Finally the model is used to compensate the sun tracking errors. Simulated result shows that the method proposed in this paper improve the heliostat sun tracking performance dramatically. It also shows that the training of neural network by the extended Kalman filter provides faster convergence property, more accurate estimation and higher measurement noise rejection ability compared with the other training methods like gradient descent method.