• Title/Summary/Keyword: Sun: atmosphere

Search Result 488, Processing Time 0.024 seconds

Fabrication of Mo Thin Film by Hydrogen Reduction of MoO3 Powder for Back Contact Electrode of CIGS (MoO3 분말의 수소환원을 통한 CIGS계 후면 전극용 Mo 박막제조)

  • Jo, Tae Sun;Kim, Se Hoon;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.187-191
    • /
    • 2011
  • In order to obtain a suitable back contacting electrode for $Cu(InGa)Se_2$-based photovoltaic devices, a molybdenum thin film was deposited using a chemical vapor transport (CVT) during the hydrogen reduction of $MoO_3$ powder. A $MoO_2$ thin film was successfully deposited on substrates by using the CVT of volatile $MoO_3(OH)_2$ at $550^{\circ}C$ for 60 min in a $H_2$ atmosphere. The Mo thin film was obtained by reduction of $MoO_2$ at $650^{\circ}C$ in a $H_2$ atmosphere. The Mo thin film on the substrate presented a low sheet resistance of approximately $1{\Omega}/sq$.

Inhibitory Effect of 7-O-butyl Naringenin on Growth of Helicobacter pylori ATCC 26695

  • Kim, Kee-Tae;Moon, Sun-Hee;Yeo, Eun-Ju;Park, Yong-Sun;Han, Ye-Sun;Nah, Seung-Yeol;Lee, Na-Gyong;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.466-468
    • /
    • 2006
  • The antimicrobial effect of a novel flavonoid (7-O-butyl naringenin) on Helicobacter pylori ATCC 26695 and its inhibitory effects on the urease activity of the strain were evaluated by comparing with quercetin and naringenin. H. pylori was cultured with brain heart infusion supplemented with 5% horse serum at $37^{\circ}C$ under 10% $CO_2$ atmosphere and the inhibitory effects of flavonoids against the strain were detected using micro-plate methods. During 12 hr of incubation time, the optical densities of phenol red reduced (pink color) in the urea broth by producing ammonia were detected at 560 nm with a spectrophotometer. The results indicated that both quercetin and 7-O-butyl naringenin were effective against the growth of H. pylori. Moreover, inhibitory effect of 7-O-butyl naringenin on the growth of H. pylori was about two-fold higher than quercetin at the same concentration. With regard to H. pylori urease activity, 7-O-butyl naringenin had a greater inhibitory effect than did naringenin or quercetin at the same concentration.

Modified Atmosphere Packaging of Minimally Processed Cut Garlic (최소가공된 절단 마늘의 환경기체조절포장)

  • Kwon, Min-Ji;Shin, Yong-Jae;Lee, Dong-Sun;An, Duck-Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • There is a need in food industry to store minimally processed garlic for long time to have it be used just at the time of demand for final product processing. Optimal modified atmosphere packaging is expected to slow down the quality change extending its storage life. In order to find optimal packaging conditions, plastic films of different gas permeability properties (low density polyethylene (LDPE) $30{\mu}m$, polyolefin $50{\mu}m$ (PD 900), polyolefin $20{\mu}m$ (PD 941)) were used for packaging 400 g of minimally processed garlic. Perforated LDPE packages were prepared as control. The packaged products were stored at $1{\pm}1^{\circ}C$ for 52 days. Package treatments were compared in weight loss, decay, surface color, hardness and soluble solid content. While control package had normal atmosphere of air, LDPE, PD 900 and PD 941 packages attained internal concentration of $O_2$ 4.6% / $CO_2$ 12%, $O_2$ 0.9% / $CO_2$ 21% and $O_2$ 0.5% / $CO_2$ 13% after 45 days, respectively. Control packaging had rapid weight loss with high mold decay and great surface color change in 45 days. In PD 900 film packages of lowest gas permeability, the fresh-cut garlic could be stored without mold decay for 52 days. Except control packaging, there were no significant differences in surface color, hardness and soluble solid content among package treatments.

  • PDF

Application of Master Packaging System to Fresh Shiitake Mushroom Supply Chain on Semi-commercial Scale (생표고버섯에 대한 마스터 포장 시스템의 현장 적용)

  • An, Duck Soon;Lee, Ji Hye;Lee, Hye Lim;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.3
    • /
    • pp.71-76
    • /
    • 2014
  • Master packaging system is a technology combining primary and secondary packaging to preserve the fresh produce in the supply chain. Master packaging system with tailor-designed gas transfer and $CO_2$ absorber of $Ca(OH)_2$ was applied to fresh shiitake mushroom in its supply from farm to retail store. The temperature, humidity and package atmosphere were monitored through the distribution and/or storage until the packages were opened to measure the mushroom quality. Conventional perforated individual packages without secondary master pack were prepared and travelled the same path for comparison purpose. While high temperature history was observed in some initial period of actual practice of the mushroom transportation and storage unexpectedly, the package atmosphere around the produce in the master packaging system was maintained at modified atmosphere consisting of $O_2$ concentration of 0.4 to 4.2% and $CO_2$ concentration of 0.7 to 1.7%, which is known to be beneficial for the mushroom preservation. While curing the mushrooms with precooled drying was effective for quality preservation, positive effect of master packaging system could be apparent for the uncured mushroom. Harmonized combination of curing treatment, master packaging system and temperature management was suggested for the best quality preservation of the fresh shiitake mushroom.

  • PDF

Internal Atmosphere of Individual Sweet Persimmon Package as Function of Fruit Size and Package Film Area (과일 크기와 포장 표면적에 따른 낱개 단감 포장의 기체조성)

  • Kim, Hae-Jin;Ahn, Gwang-Hwan;Jeong, Mi-Jin;An, Duck-Soon;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.16 no.2_3
    • /
    • pp.53-58
    • /
    • 2010
  • Internal gas composition of single unit persimmon package was evaluated at $-1^{\circ}C$ as function of package film area and fruit weight in order to find packaging conditions to achieve the optimal modified atmosphere beneficial for keeping the freshness. With large fruit size(${\approx}230\;g$), low permeable films (LLDPE/PP in 35 or $40\;{\mu}m$ thickness and $30\;{\mu}m$ OPP) with an exact fitness to the fruit (surface area of $0.040\;m^2$) resulted in anaerobic atmosphere with occurrence of browning in long term storage. With medium (${\approx}210\;g$) and medium small (${\approx}190g$) sizes, larger surface area of low permeable $35\;{\mu}m$ LLDPE/PP film provided higher $O_2$ and lower $CO_2$ concentrations causing higher occurrence of softening and blackening discoloration. On the other hand, smaller surface area of lower $O_2$ and higher $CO_2$ concentrations had a high risk of browning. Wise combination of fruit size, packaging film and surface area is required for attaining the beneficial modified atmosphere to prevent the physiological injuries.

  • PDF

A Master Packaging System for Preserving Qualities of Peaches in the Fresh Produce Supply Chain (농산물 유통과정에서 복숭아의 품질유지를 위한 마스터 포장 시스템)

  • Jeong, Mijin;An, Duck Soon;Park, Woo Po;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.7-10
    • /
    • 2013
  • A packaging system integrated in primary and secondary packages to deliver consumers fresh peach in the produce supply chain was designed and its effectiveness on quality preservation was tested. The master packaging system was designed to contain 6 individual polypropylene film (PP, $30{\mu}m$ thickness) packages of 300 g peach fruit inside $35{\mu}m$ thick low density polyethylene (LDPE) bag located in a corrugated paperboard box. As a variable to attain the desired package atmosphere around the fruit during cold storage and subsequent retail display at higher temperature, different numbers (1, 3 and 7) of microperforations in $59{\mu}m$ diameter were tested on the individual PP packages. As control treatment, six fruits were placed without wrapping in a corrugated paperboard box. During the storage at $5^{\circ}C$, the control and individual packages were periodically separated from the box or master package, moved to the simulated retail shelf conditions of $20^{\circ}C$ and then stored for 3 more days with package atmosphere and fruit quality being measured. The package with 7 microperforations was the best in the ability to attain beneficial MA of 6~10% $O_2$ and 11~19% $CO_2$ around the fruit during the chilled storage at $5^{\circ}C$ and simulated retail display at $20^{\circ}C$. Packages with smaller number of microperforations resulted in anaerobic atmosphere at the low temperature storage and/or the subsequent high temperature display. Compared to control, all the treatments with master packaging system gave better retention of fruit firmness with significantly less weight loss.

  • PDF

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.

MULTILAYER SPECTRAL INVERSION OF SOLAR Hα AND CA II 8542 LINE SPECTRA WITH HEIGHT-VARYING ABSORPTION PROFILES

  • Chae, Jongchul;Cho, Kyuhyoun;Kang, Juhyung;Lee, Kyoung-Sun;Kwak, Hannah;Lim, Eun-Kyung
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.5
    • /
    • pp.139-155
    • /
    • 2021
  • We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption profile was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption profile is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model fitting. We apply this updated MLSI to two sets of Hα and Ca II line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We find that the new version of the MLSI satisfactorily fits most of the observed line profiles of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral fibril, an umbral feature, and a fast downflow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca II 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.

SPECTRAL DIAGNOSTICS OF NON-THERMAL PARTICLES IN THE SOLAR CHROMOSPHERE

  • FANG C.;XU Z.;DING M. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.55-61
    • /
    • 2003
  • There are at least three effects of the non-thermal particle bombardment on the solar atmosphere: (1) non-thermal ionization and excitation; (2) proton-hydrogen charge exchange; (3) impact line polarization. Due to the non-thermal ionization and excitation effects of electron bombardments in flares, H$\alpha$ line is widely broadened and shows a strong central reversal. Significant enhancements at the line wings of Ly$\alpha$ and Ly$\beta$ are also predicted. In the case of proton bombardment, less strong broadening and no large central reversal are expected. However, due to proton-hydrogen charge exchange, the enhancements at the red wings of Ly$\alpha$ and especially of Ly$\beta$ lines at the early impulsive phase of flares are significant. Electron beam can also in some cases generates visible and UV continuum emission in white-light flares. However, at the onset phase, a negative 'black' flare may appear in several seconds, due to the increase of the $H^-$ opacity. The impact polarization of atomic lines can provide complementary information on the energetic particles, the energy transport and deposit in the solar chromosphere. New results of spectropolarimetric analysis for the major flare on July 23, 2002 are also given in the paper.

Sliding Wear of Alumina-silicon Carbide Nanocomposites

  • Kim, Seung-Ho;Lee, Soo-Wohn;Kim, Yun-Ho;Riu, Doh-Hyung;Tohru Sekino;Koichi Niihara
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1080-1084
    • /
    • 2001
  • Alumina-based nanocomposites have improved mechanical properties such as hardness, fracture toughness and fracture strength compared to monolithic ceramics. In this study, alumina with 5 vol% of nanosized SiC was sintered by a hot pressing technique at 1600$\^{C}$, 30 MPa for 1h in an argon gas atmosphere. Microstructures and mechanical properties in alumina-SiC nanocomposite were investigated. Moreover, tribological properties in air and water were compared each other. Relationships of wear properties with mechanical properties such as hardness, strength, and fracture toughness as well as microstructure were studied. Based on experimental results it was found that nanosized SiC retarded grain growth of matrix alumina. Mechanical properties such as hardness, fracture toughness and strength were improved by the addition of nanosized SiC in alumina. Improved mechanical properties resulted in increased sliding wear resistance. Tribological behavior of nanocomposites in water seemed to be governed by abrasive wear.

  • PDF