• Title/Summary/Keyword: Sum of Integer Parts

Search Result 14, Processing Time 0.017 seconds

A Two-Stage Heuristic for Disassembly Scheduling with Capacity Constraints

  • Jeon Hyong-Bae;Kim Jun-Gyu;Kim Hwa-Joong;Lee Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.12 no.1
    • /
    • pp.95-112
    • /
    • 2006
  • Disassembly scheduling is the problem of determining the quantity and timing of disassembling used or end-of-life products while satisfying the demand of their parts and/or components over a planning horizon. The case of assembly product structure is considered while the resource capacity constraints are explicitly considered. A cost-based objective is considered that minimizes the sum of disassembly operation and inventory holding costs. The problem is formulated as an integer programming model, and a two-stage heuristic with construction and improvement algorithms is suggested in this paper. To test the performance of the heuristic, computational experiments are done on randomly generated problems, and the results show that the heuristic gives near optimal solutions within a very short amount of computation time.

An analysis of Multi-mode LDPC Decoder Performance for IEEE 802.11n WLAN (IEEE 802.11n WLAN용 Multi-mode LDPC 복호기의 성능 분석)

  • Park, Hae-Won;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.80-83
    • /
    • 2010
  • This paper describes an analysis of decoding performance of multi-mode LDPC(Low Density Parity Check) decoder which supports three block lengths (648, 1296, 1944) and four code rates (1/2, 2/3,3/4, 5/6) for IEEE 802.11n WLAN system. A fixed-point model of LDPC decoder which adopts min-sum algorithm and layered decoding scheme is implemented using Matlab. From fixed-point simulation results for various bit-width parameters such as internal bit-width, bit-width of integer and fractional parts, an optimal design condition and decoding performance of LDPC decoder are analyzed.

  • PDF

Investment Scheduling of Maximizing Net Present Value of Dividend with Reinvestment Allowed

  • Sung, Chang-Sup;Song, Joo-Hyung;Yang, Woo-Suk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.506-516
    • /
    • 2005
  • This paper deals with an investment scheduling problem of maximizing net present value of dividend with reinvestment allowed, where each investment has certain capital requirement and generates deterministic profit. Such deterministic profit is calculated at completion of each investment and then allocated into two parts, including dividend and reinvestment, at each predetermined reinvestment time point. The objective is to make optimal scheduling of investments over a fixed planning horizon which maximizes total sum of the net present values of dividends subject to investment precedence relations and capital limit but with reinvestment allowed. In the analysis, the scheduling problem is transformed to a kind of parallel machine scheduling problem and formulated as an integer programming which is proven to be NP-complete. Thereupon, a depth-first branch-and-bound algorithm is derived. To test the effectiveness and efficiency of the derived algorithm, computational experiments are performed with some numerical instances. The experimental results show that the algorithm solves the problem relatively faster than the commercial software package (CPLEX 8.1), and optimally solves the instances with up to 30 investments within a reasonable time limit.

  • PDF

Hybrid design method for air-core solenoid with axial homogeneity

  • Huang, Li;Lee, Sangjin;Choi, Sukjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.50-54
    • /
    • 2016
  • In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million).