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ABSTRACT

Disassembly scheduling is the problem of determining the quantity and timing of disassembling used
or end—of-life products while satisfying the demand of their parts and/or components over a plan—
ning horizon. The case of assembly product structure is considered while the resource capacity
constraints are explicitly considered. A cost—based objective is considered that minimizes the sum
of disassembly operation and inventory holding costs. The problem is formulated as an integer pro—
gramming model, and a two—stage heuristic with construction and improvement algorithms is sug—
gested in this paper. To test the performance of the heuristic, computational experiments are done
on randomly generated problems, and the results show that the heuristic gives near optimal solutions
within a very short amount of computation time.
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1. INTRODUCTION

For the last decades, growing concerns on environmental issues have stimulated
the industry to develop various material and product recovery processes. Disas-
sembly, one of the essential material and product recovery processes, is the proc-
ess of separating used or end-of-life products into their constituent parts, subas-
semblies, or other groupings. Due to its importance in material and product re-
covery, previous research has been done on various disassembly problems such as
design for disassembly, disassembly process planning, and disassembly schedul-
ing. For literature reviews on these problems, see Boothroyed and Alting [1],
Jovane et al. [4], Lambert {10], Lee et al. [13], O’shea et al. [18], and Santochi et al. [19].

This paper focuses on disassembly scheduling which is one of the important
mid-term or short-term planning problems in disassembly systems. In general,
disassembly scheduling can be defined as the problem of determining the quan-
tity and timing of disassembling used or end-of-life products to satisfy the de-
mand of their parts and/or components over a planning horizon. In other words,
from its solution, one can determine which products, how many, and when to dis-
assemble. That is, the problem corresponds to the production planning problem in
assembly systems. However, due to the difference in the number of demand
sources, disassembly scheduling is more complicated than the ordinary produc-
tion planning problem. That is, in the assembly environment, parts/components
converge to a single demand source of the final product, while in the disassemble
environment, products diverge to its multiple demand sources of parts/com-
ponents. See Brennan et al. [2] and Gupta and Taleb [3] for more details.

Most previous research on disassembly scheduling is uncapacitated ones, i.e.,
resource capacity restrictions are not considered. Gupta and Taleb [3] consider
the basic case, i.e., single product type without parts commonality, and suggest a
simple algorithm without explicit objective function, and Lee [12] shows the sig-
nificance of cost consideration in solving the disassembly scheduling problems.
Lee and Xirouchakis [15] suggest a heuristic algorithm for the objective of mini-
mizing the costs related with disassembly process, and Kim et al. [5] suggest a
branch and bound algorithm based on the Lagrangean relaxation that can give
optimal solutions for small-sized problems. For the extended models with parts
commonality, see Kim et al. {7, 8], Langella [11], Neuendorf et al. [17], Taleb and
Gupta [20], and Taleb et al. [21]. Also, Lee et al. [14] present integer program-
ming models for all uncapacitated cases together with their performances using a
commercial software package.
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As in the production planning problems in assembly systems, the resource
capacity restrictions should also be considered in disassembly scheduling so that
the resulting schedule is more applicable. Several research articles consider ca-
pacitated disassembly scheduling for the case with single product types without
parts commonality. Lee et al. [16] suggest an integer programming model that
considers various cost factors occurred in disassembly processes. Although the
optimal solutions can be obtained from the model, its application is limited only to
the small-sized problems. In fact, the computational results show that it is not
adequate for practical sized problems due to its excessive computation time. Re-
cently, Kim et al. [9] suggested an optimal algorithm that minimizes the number
of products disassembled, and Kim et al. [6] suggested a Lagrangean heuristic
algorithm for the objective of minimizing the sum of setup, disassembly operation,
and inventory holding costs.

This paper considers capacitated disassembly scheduling with the basic case
of single product type without parts commonality for the objective of minimizing
the sum of disassembly operation and inventory holding costs. In the aspect of
problem considered, therefore, this paper extends the model of Kim et al. [9] that
minimizes the number of product disassembled. Note that the cost-based objective
is more general than the objective considered in Kim et al. [9]. Also, the problem
considered here is a special case of the model of Kim et al. [6] that consider the
objective of minimizing the sum of setup, disassembly operation, and inventory
holding costs. In other words, Kim et al. [6] consider the additional setup cost in
the objective function. Unlike this, we suggest a simple and efficient heuristic for
the special case that setup is not a significant factor (e.g., automated disassembly
gsystems). The problem is formulated as an integer programming model, and a
two-stage heuristic, which consists of construction and improvement algorithms,
is suggested in this paper. Computational experiments are done on a number of
randomly generated problems, and the test results are reported.

This paper is organized as follows. In the next section, the problem is de-
scribed in more detail with an integer programming model. Section 3 presents the
two-stage heuristic and computational results on randomly generated test prob-
lems are reported in Section 4. Finally, Section 5 gives concluding remarks and
discussion of future research.

2. PROBLEM DESCRIPTION

Before describing the problem, this section explains the disassembly product
structure. In the disassembly structure, the root item represents the product it-
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self to be disassembled and each leaf item is the part or component not to be dis-
assembled further. A child item represents any item that has a parent item which
has at least two child items. Note that a child item has only one parent item in
the problem considered in this paper, i.e., the case without parts commonality.
Figure 1 shows an example of disassembly product structure, obtained from
Gupta and Taleb [3]. Item 1 is the root item, and items 6 to 12 are leaf items. The
number in parenthesis represents the yield of the item when its parent is disas-
sembled, e.g., disassembly of one unit of item 5 derives three units of item 10, two
units of item 11, and three units of item 12. Here, item 5 is called parent item,
while items 10, 11 and 12 are called its child items. Also, disassembly lead time
(DLT) is the time required to disassemble a certain parent item. In general, the
disassembly structure can be obtained from the disassembly process plan that
describes disassembly level and sequence. See Lambert [10], Lee et al. [13],
O’Shea et al. [18], and Santochi et al. [19] for more details on disassembly proc-
ess planning.
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Figure 1. Disassembly product structure: an example

The capacitated disassembly scheduling problem considered in this paper can
be described as follows: for a given disassembly product structure, the problem is
to determine the quantity and timing of disassembling each parent item (including
the root item) to meet the demands of leaf items over a planning horizon while sat-
isfying the resource capacity constraint in each period of the planning horizon.
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Here, the capacity constraint implies the available time in each period, and each
disassembly operation consumes a portion of the available time. The objective is
to minimize the sum of disassembly operation and inventory holding costs. The
disassembly operation cost, which is proportional to the required labor or machine
processing time, is the direct cost incurred to perform the disassembly operation.
Also, the inventory holding cost occurs when items are stored to satisfy future
demand, and they are computed based on the end-of-period inventory. It is as-
sumed that disassembly operation and inventory holding costs are time invariant,
i.e., cost values are the same over the planning horizon.

The disassembly product structure is assumed to be given by the correspond-
ing disassembly process plan that specifies all disassembly operations with prece-
dence relations and their processing times. Additional assumptions made in this
problem are summarized as follows: (a) there is no shortage of the root items, 1i.e.,
products can be delivered whenever they are needed; (b) demands occur only for
leaf items (not intermediate parent items) and they are given in advance and de-
terministic; (c) backlogging is not permitted and hence demands are satisfied on
time; (d) parts and/or components obtained from disassembly are perfect in qual-
ity, i.e., no defectives; (e) each disassembly operation is done in only one period
and cannot be done over two or more periods; and (f) disassembly lead times are
given in advance and deterministic.

The problem can be formulated as an integer programming model. In the
formulation, without loss of generality, all items are numbered with integer 1, 2,

.. U, ... I. Here, i; denotes the index for the first leaf item, and therefore the indi-
ces that are larger than or equal to i; represent leaf items. The notations used in
this paper are summarized below.

Parameters

Di disassembly operation cost of item i

hi inventory holding cost of item i

8i disassembly processing time of parent item i

C: available capacity (processing time) in period ¢

Di:  demand requirement of leaf item i in period ¢

aij number of units (yield) of item j obtained by disassembling one unit of item
L@ <))

Sit external scheduled receipt of item i in period ¢

(i) parent of item i
L disassembly lead time (DLT) of item ¢
Iio initial inventory of item i
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Decision variables
Xy  amount of item i disassembled in period ¢
L inventory level of item ¢ at the end of period ¢

Now, the integer programming model is given below.

y-1 T 17
[P] Minimize Y > p; X, +>.> h -1,
i=1 t=1 i=21=1
subject to
Iit = Ii,t—l +Sit +a¢(i),i .X(ﬂ(i),t"lw,ﬂ) _Xit fori= 2, 3, eee il —landit= 1, 2, T (1)
Ly =1+ +tapiy Xyt ~ Dy fori=i,i+1..Tandt=1,2,...T (2
i-1
ZngnSCl fort=1, 2, ...T (3)
i=1
Xi: > 0 and integers fori=1,2,...i—1andt=1,2,... T (4)
I; >0 and integers fori=2,3,...1andt=1,2,...T (5)

The objective function denotes the sum of disassembly operation and inven-
tory holding costs. Constraint (1) represents the inventory balance of each parent
item. That is, at the end of each period, the inventory level of the parent item is
what we had before the period, increased by the external scheduled receipt and
the quantity obtained by disassembling its corresponding parent item, and de-
creased by the quantity of the item disassembled in that period. Here, the inven-
tory balance constraint of the root item is not included because it is not necessary
to have surplus inventory of the root item. Also, the inventory balance of each leaf
item is represented by constraint (2), which is different from (1) in that the de-
mand requirement is used instead of the amount of items disassembled. Also,
constraint (3) represents the resource capacity restriction in each period. That is,
the sum of processing times of disassembly operations assigned to each period
should be less than or equal to the given capacity of that period. Finally, the con-
straints (4) and (5) represent the conditions of the decision variables. Particularly,
constraint (5) guarantees that backlogging is not permitted.

3. TWO-STAGE HEURISTIC

Although the optimal solutions can be obtained by solving problem [P] using a
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commercial software package, it requires an excessive and inconsistent amount of
computation time. (The computational results will be reported in Section 4.)
Therefore, we suggest a heuristic consisting of two stages: a construction algo-
rithm and an improvement algorithm. The construction algorithm gives an initial
feasible solution (especially, with respect to the capacity constraint), and the im-
provement algorithm modifies the initial solution by iteratively changing and
evaluating the current disassembly schedules while considering cost changes.

3.1 Stage 1: Constructing an initial solution

The initial feasible solution is obtained as follows. First, an infeasible solution
(with respect to the capacity constraints) is obtained using the algorithm of Gupta
and Taleb [3], to be called the GT algorithm hereafter. Then, it is modified itera-
tively into a feasible solution that satisfies the capacity constraints. Note that the
GT algorithm gives the minimal latest disassembly schedule in that it satisfies
the demands of leaf items as latest as possible with the minimum amount of dis-
assembly operations. (See Lee and Xirouchakis [15] for more details on the GT
algorithm and the minimal latest disassembly schedule.) Therefore, if the solution
obtained from the GT algorithm satisfies the capacity constraint, it minimizes the
sum of disassembly operation and inventory holding costs, and hence it is optimal
for the problem [P]. Otherwise, the infeasible solution should be modified into a
feasible one with respect to the capacity constraints.

The modification method suggested in this paper is based on the backward
moves of disassembly operations. Here, the backward move implies that the dis-
assembly operations assigned to a later period is moved to an earlier period while
considering the capacity constraint of the earlier period. Note that a forward
move from an earlier period to a later period results in an infeasible solution be-
cause the disassembly schedule obtained from the GT algorithm is the latest one.
In this paper, the backward move is done from the root item (to the parent items)
until the capacity overload is eliminated. (The method to determine the amounts
of moves will be explained later.) If there are no movable items while the capacity
is still overloaded, the disassembly operations of the root item assigned to one
period earlier is moved backwardly so that the inventories of non-root parent
items can be provided. Note that each of the non-root parent items can be moved
only if its inventory level is sufficient and the move of the root item provides the
inventories of non-root parent items.

Before explaining the detailed method to modify the infeasible solution ob-
tained from the GT algorithm, we first define the overloaded capacity (Or) with a
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threshold value S as follows:

Otz{L,—ﬁ ifL, > B

L, otherwise

where L, = Z:ll 8;-X;, —-C,, ie., the overloaded capacity at period t. (Note that

i
Xisfori=1, 2, ...ii~ 1 are given from the solution of the GT algorithm.) Here, the
overloaded capacity is modified with the threshold value for the objective of dis-
tinguishing the amounts of moves. That is, if the overloaded capacity (L) is more
than or equal to the threshold value, the amount of move is set to the overloaded
capacity subtracted by the threshold value. Otherwise, the moves are done one by
one so that the remaining capacity after the move is maintained as least as possi-
ble.

As explained earlier, the modification is done from the backward move of the
root item. Let ¢ denote the current period for which the backward move is consid-
ered. Then, the amount of its move is determined as

Q= min{[&—l, la Xy, |},
&1

where [ o] is the smallest integer that is greater than or equal to e, | e|is the larg-
est integer that is less than or equal to e, and a is a parameter, used to avoid ex-
cessive inventories, with the range [0, 1]. If the capacity is still overloaded after
the move, the backward moves for parent items are done into one period earlier.
To do this, we first select the item with

¥ = argmin{(&—(—&} ,
ied i 8
where @ = {i|min(X,,/,, ;)>0, i=1, 2, ..7 —1}. Also, the amount of its move is
determined as

mln{lr-o—t—la Xi*t’ Ii* t—l} lth 2 ﬁ
qi* = gi* ’

1 otherwise

In the case that there are no movable items while the capacity is still overloaded,
the backward move of the root item is done from period ¢t — 1 to period £ — 1 — l1 so
that the parent items in the current period ¢ can be moved. Note that the move of
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the root item can provide the indispensable inventories of non-root parent items
in the period t — 1. Here, the amount of its move is determined as

A=min[X, ;, max{min(( L “, ﬁ)}],
T eHQ) ;- 8; ;

14

where H(i) denotes the set of child items of parent i. Here, the max term gives the
amount of move required for eliminating the overloaded capacity.
Now, the overall procedure of the first stage is summarized below.

Procedure 1. (Construction of an initial solution)

Step 1. Obtain an uncapacitated solution using the GT algorithm and calculate
the amount of overload for each period, i.e., L;: for all t. If the solution
satisfies the capacity constraints for all periods, then stop (The solution
is optimal.).

Step 2. Seta=0,8=0, y= Z:’: g; /(il -1) and L, = tx{:lzaxT{Lt} .

Step 3. Do the following steps:

(a) Set t'=1.

(b) Set =t

(c) If L: < 0, i.e., not overloaded, go to (g). Here, if L1> 0, i.e., overloaded
in period 1, go to Step 4.

(d) Perform the move for the root item using the method explained ear-
lier. If the overload in period ¢ is eliminated, go to (g). Otherwise, go
to (e).

(e) If there are movable parent items in period ¢, perform their moves
repeatedly using the method explained earlier until eliminating the
overload, and go to (g). Otherwise, go to (f).

(f) If there are movable root item in period ¢ — 1, perform its move from
period ¢ — 1 to t — 1 — [1 using the method explained earlier, and go to
(e). Otherwise, go to Step 4.

() Sett=t-1.Ift>1, go to (c).

(h) Set t'=t'+1.If ' <T,go to (b). Otherwise, stop and save the solu-

tion if the amounts of overloads for all periods are eliminated.
Step4. Seta=a+0.1.Ifa < 1, go to Step 3.

Step 5. Set a =0 and 8=+ y. go to Step 3. If B> Lmax, stop. (The algorithm
may not be able to find a feasible solution or the problem is infeasible.)
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3.2 Stage 2: Improvement

This second stage improves the initial solution while considering the changes in
total cost. The improvement method suggested in this paper is based on two types
of moves, forward and backward moves, at the same time. The forward move im-
plies that a portion of the disassembly quantity assigned to a period is moved to
one period later, while the backward move is vice versa. Before explaining the
moves, we make the following assumption

hi S Z hk 'aik fOI' L = 2, 3, s il_].,
keH(i)

which implies that the item’s value may increase as the disassembly operations

progress. Note that this assumption is not very restrictive since the inventory
holding cost is directly related to the item’s value.

3.2.1 Forward move

Let Xir, fori=1,2,...u—1and t=1, 2, ... T, be the current disassembly schedule.
Suppose that n disassembly operations of parent item ¢ in period ¢ are moved to
period ¢ + 1. Then, new disassembly quantities X, and X/,,; of item i in periods

t and ¢+ 1 become

r ! _
X,=X,-n and X/, ,=X,,,,+n,

1

and the inventory levels of the non-root parent item i and its child items are
changed into

Ii=Ii+n and I, =1}, —n-ay fork e HQ).
Note that the inventory level of the root item is not considered in this paper

since the root items can be delivered whenever they are required. (See assump-
tion (a).) Then, the possible range of n becomes

. . Ik,t+L
0 < n <min{ min Xt (6)
keHG)| ay,
which can be obtained from the constraint that the disassembly quantities and
inventory levels should be nonnegative. The forward move decreases the inven-
tory holding cost, which can be represented as

keH(i)
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Note that the forward move results in no change in disassembly operation
cost since the total amount of disassembly operations remains the same after the
move and the disassembly operation costs are time-invariant.

3.2.2 Backward move
Suppose that m disassembly operations of item j are moved from period ¢ + 1 to .

Then, new disassembly quantities X, and Xj;,,; ofitem;in periods¢andi+1

S+
become

' 7 _
th —X]t+m and Xj’t+l—Xj,t+l—m,

and the inventory levels of non-root parent item j and its child items are changed
into

I,=I;-m and I, =1, +m-a for k € H()).

As in the forward move, the possible range of m becomes

0<m<min{X;,,,1;}, ™

which can be obtained from the nonnegativity constraints explained in the for-
ward move. However, unlike the forward move, the backward move increases the
inventory holding cost, which can be represented as

keH())

Also, as in the forward move, the backward move results in no change in disas-
sembly operation cost.

As stated earlier, the improvement is done by the simultaneous forward and
backward moves. In other words, an improved solution can be obtained if the cost
decrease obtained from the forward move is greater than the cost increase from
the backward move. Here, required is the method to determine the amounts of
moves while keeping the feasibility for the capacity constraints.

Suppose that n disassembly operations of parent item i are moved from pe-
riod ¢t to ¢ + 1, i.e., forward move, and m disassembly operations of item j are
moved from period ¢t + 1 to ¢, i.e., backward move, at the same time. Then, after
the simultaneous forward and backward move, the remaining capacities in peri-
ods ¢ and ¢t + 1 can be obtained as

R =R +n-g;-m-g; and R, =R, -n-g; +m-g;,
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where R, =C, - 21;—11 8; - X;; . Therefore, we can see that the simultaneous move is

feasible if B/ >0 and Ry >0. This gives the range for the amount m of back-

ward move for a given amount n of forward move.

n-gi—RMSmSn-gi+Rt ®
8 g;

We explain the method to determine the amounts m and n of the simultane-
ous forward and backward move. Here, it is better to set the value of m to the
lower limit in (8) since the backward move increases the total cost, while the
value of n to the upper limit for its possible range since the forward move de-
creases the total cost. Then, based on (7) and (8), we can consider four cases given
below.

) If (n-g,+R)g ; <0, then there exists no possible amount n.

i) If (n-g -R,)/g;<0<(n g +R,)/g;, then it is better to set m = 0. Also,
the range of n can be determined as #n<R,,,/g; from (n-g, - R,,;)/ g;<0.
Therefore, we can obtain

I
m* =0, n* = min{ min Zhivh , —R‘—H— X} 9
keH (1) a;, 8;

Here, n* is calculated with the range (6).
iii) If 0<(n-g;-R,,;)/g; <min{X;,,;,I;}, then we can obtain the range of n as

R g, -min{X }+R
t—HSnS ]l+].’ Jt t+1.

g; &;

Therefore, the amount of forward move becomes

I min J. 3+ R
n* = min{ min kit , £i° g L+ R X}, (10-1)
keH (i) Q;r &;

since it is better to set the value of n to the upper limit while considering the
range (6). Also, for a given n*, the amount of backward move becomes

m* = }V(n gl Izt-{»l)—l (10_2)
&j
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iv) If min{X;,,;,I;}<(n-g; —R,;)/ g;, then there exists no possible amount m

due to the capacity limitation.

Now, the overall procedure of the second stage is summarized below.

Procedure 2. (Improvement)
Step1l. Seti=1

Step 2. For item i, do the following steps:

(a) Sett=1

(b) Setj=i+1 v

(¢) Perform the simultaneous backward and forward move between
items i and j by the amount n* and m* given in (9), (10-1) and (10-2).
If this reduces the total cost, update the solution and go to Step 1.

(d) Setj=j+1.Ifj>i—1,sett=¢+ 1 and go to (b). Otherwise, go to (c)
Here, if t > T, go to Step 3.

Step 3. Seti=i+1,ifi>ii— 1, stop. Otherwise, go to Step 2.

4. COMPUTATIONAL EXPERIMENTS

To test the performance of the two-stage heuristic, computational experiments
were performed on a number of randomly generated test problems. Two perform-
ance measures were used in this test: percentage deviations from the optimal so-
lution values and CPU seconds. Here, optimal solution values were obtained from
solving the integer program [P] directly using CPLEX 9.0. Also, the two-stage
heuristic is compared with the algorithm of Kim et al. [9] (without and with the
improvement method). Although the existing algorithm is designed for the objec-
tive of minimizing the number of products disassembled, the comparison is done
to show the importance of cost-based objective. The algorithm and the program to
generate integer programs were coded in C and the tests were done on a personal
computer with a Pentium processor operating at 2.0 GHz clock speed.

For the test, 750 problems were generated in total, i.e., 25 problems for each
combination of two levels of capacity tightness (loose and tight), five levels of the
number of items (10, 20, 30, 40, and 50), and three levels of the number of periods
(10, 20, and 30). For each level of the number of items, 5 disassembly products
structures (and hence totally 25) were randomly generated. In the disassembly
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structure, the number of child items for each parent and its yield were generated
from DU(2, 5) and DU(1, 3), respectively. Here, DU(a, b) is the discrete uniform
distribution with range [a, b]. Also, disassembly lead times were set to 0, 1, and 2
with probabilities, 0.2, 0.7, and 0.1, respectively. For each disassembly structure,
5 problems with different data were generated for each level of the number of pe-
riods. Disassembly operation costs were generated from DU(50, 100) and inven-
tory holding costs were generated from DU(5, 10). The capacity of each period was
set to 400, 480, and 540 with probabilities 0.2, 0.5, and 0.3, respectively, and dis-
assembly times were generated from DU(1, 4). To consider the capacity tightness,
the demands were generated using the following procedure:

(1) The initial demands were generated from 0 or DU(50, 200) with probabilities
0.1 and 0.9, respectively;
(2) The problem with the initial demands was solved using the GT algorithm;

(3) The overall capacity usage (CU) was calculated using CU = 2:11 ij g X,

where Xi is the solution of the GT algorithm.
(4) The demands were regenerated using d;, =|7-TC/CU -d}, | where 7 is a pa-

rameter that represents capacity tightness (7 is set to 0.7 and 0.9 for the cases
of loose and tight capacity tightness, respectively), TC is the sum of capacities
over the planning horizon, and dj, isthe demand generated initially in (1).

Finally, in the generated problems, external scheduled receipts and initial inven-
tory levels were set to 0 without loss of generality.

Test results are summarized in Table 1 that shows average percentage devia-
tions from optimal solution values and average CPU seconds. It can be seen from
the table that the two-stage heuristic can give very near optimal solutions. In fact
the overall averages were within 0.053% and 0.65% for the cases of loose and
tight capacities, respectively. Also, the two-stage heuristic suggested in this paper
significantly outperformed the algorithm of Kim et al. [9] that minimizes the
number of products disassembled. This implies that the existing algorithm does
not work well for the cost-based objective since it assigns the disassembly opera-
tions as many as possible from the first to the last period so that the inventory
holding cost increases excessively. Also, it can be seen from the table that signifi-
cant improvements are obtained from the second stage. This shows the effective-
ness of the improvement procedure. Finally, the CPU seconds of the two-stage
heuristic were much smaller than those of the CPLEX. Although we can obtain
the optimal solutions from the CPLEX, its application is limited only to the small-
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Table 1. Test results for the two—stage heuristic

(a) Case of loose capacity

Number of = Number of Percentage deviations CPU seconds
items periods Two-stage Kim et alf Two-stage CPLEX
10 10 0.73 (0.11)# 26.0 (24.3) 0.00+ 0.02
10 20 0.52 (0.01) 43.5 (42.6) 0.00 0.03
10 30 0.14 (0.07) 40.9 (40.5) 0.00 0.04
20 10 0.59 (0.08) 39.9 (35.3) 0.00 0.04
20 20 0.14 (0.02) 55.1 (51.8) 0.00 0.04
20 30 0.17 (0.01) 59.7 (57.1) 0.00 0.10
30 10 0.40 (0.02) 33.2 (29.5) 0.00 0.03
30 20 0.21 (0.02) 49.0 (44.7) 0.00 0.06
30 30 0.07 (0.003) 54.5 (51.0) 0.00 0.11
40 10 0.65 (0.17) 30.8 (23.2) 0.00 6.96
40 20 0.73 (0.02) 46.1 (40.1) 0.00 0.11
40 30 0.04 (0.001) 54.2 (49.0) 0.00 37.13
50 10 1.43 (0.17) 28.4 (22.3) 0.00 0.11
50 20 0.16 (0.01) 47.7 (40.8) 0.00 0.12
50 30 0.03 (0.003) 58.0 (52.5) 0.00 0.21
average 0.36 (0.053) 44.5 (40.3)

T The algorithm of Kim et al. (2005)

1 average percentage deviation out of 25 problems without and with (in parenthesis) the
improvement stage procedure

* Average CPU seconds is less than 0.005s

(b) Case of tight capacity

Number of  Number of Percentage deviations CPU seconds
items periods Two-stage Kim et al. Two-stage CPLEX
10 10 4.39 (1.04) 7.7 (6.8) 0.00 0.8
10 20 2.60 (0.67) 13.9 (13.2) 0.00 164.0 .
10 30 2.92 (0.43) 14.6 (14.0) 0.00 4.3
20 10 3.55 (1.68) 12.5 (09.7) 0.00 6.7
20 20 3.47 (0.73) 17.8 (15.0) 0.01 226.9
20 30 3.25 (0.75) 22.4 (19.5) 0.01 532.8
30 10 4.12 (0.50) 10.2 (6.6) 0.00 0.4
30 20 3.26 (0.41) 14.9 (11.7) 0.00 21.6
30 30 1.74 (0.23) 17.2 (15.0) 0.01 0.7
40 10 3.63 (0.67) 8.4 (5.3) 0.00 3.5
40 20 3.41 (0.28) 16.9 (13.1) 0.01 436.1
40 30 . 2.01(0.32) 20.6 (16.9) 0.01 443.1
50 10 4.38 (1.12) 8.5 (5.0) 0.01 : 0.2
50 20 4.04 (0.69) 18.0 (13.2) 0.02 20.5
50 30 1.98 (0.17) 24.2 (19.9) 0.02 2.9

average 3.25 (0.649) 15.19 (12.33)
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sized problems due to its long and inconsistent computation times. Therefore, we
can argue that the two-stage heuristic suggested in this paper can be more effec-
tive in the practical sense.

5. CONCLUDING REMARKS

This paper considered the disassembly scheduling problem that determines the
quantity. and timing of disassembling used or end-of-life products while satisfying
the demand of their parts and/or components over a given planning horizon. The
resource capacity constraint was considered explicitly for the objective of minimiz-
ing the sum of disassembly operation and inventory holding costs. The problem
was formulated as an integer programming model, and a two-stage heuristic was
suggested that consists of construction and improvement algorithms. The con-
struction algorithm gives an initial feasible solution, and the improvement algo-
rithm modifies the initial solution by iteratively changing the disassembly sched-
ules while considering cost changes. Computational experiments on a number of
randomly generated test problems showed that the two-stage heuristic could give
very near optimal solutions within a very short amount of computation time.

This research can be extended in several ways. First, it is needed to consider
more general cases such as multiple product types and part commonality. Here,
the part commonality introduces one or more procurement sources for each com-
mon part and hence makes the problem difficult to solve. Second, like other disas-
sembly problems, uncertainties such as stochastic demand, defective parts or
components, and stochastic disassembly operation times are important further
considerations.
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