• 제목/요약/키워드: Sulfur oxides

Search Result 123, Processing Time 0.023 seconds

MONNTORING AIR QUALITY AND ACIDDEPOSITION IN SOUTHERN U.S.

  • Allen, Eric R.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1997.10a
    • /
    • pp.1.1-32
    • /
    • 1997
  • Atmospheric monitoring capabilities were established in 1988 by the University of Florida at Duke forest, near Durham. NC: Cary forest, near Gainesville, FL: and Austin forest, near Nacogdoches, TX. Continuous (hourly averaged) measurements of air quality (ozone, nitrogen oxides and sulfur dioxide) and meteorological variables were made at these three low elevation (< 200 meters), rural locations in the southeastern U.S. for more than three years. During the same period at these sites wet and dry acid deposition samples were collected and analyzed on an event and weekly basis, respectively The monitoring locations were selected to determine actual atmospheric exposure indices for southern pine species in support of on-site surrogate exposure chamber studies conducted by Southern Commercial Forest Research Cooperative (SCFRC) investigators. Daily and quarterly averaged ozone maxima were higher (55 ppb) at the northernmost site in the network (Duke forest) in the second and third quarters (spring and summer seasons) and lower (35 ppb) in the first and fourth quarters (winter and fall seasons), when compared to ozone levels at the two southernmost sites (Cary and Austin forests). Seasonal ozone levels at the latter two sites were similar Nitrogen oxieds and sulfur dioxide levels were insignificant (< 5 ppb) most of the time at all sites, although soil emissions of NO at two sites were found to influence nighttime ozone concentrations. Typical maximum quarterly and annual aggregate ozone exposure indices were significantly higher at Duke forest (92.5/259 ppm-hr) than those values observed at the two southern sites (65.6/210 ppm-hr). Acid deposition (wet and dry) components concentrations and deposition fluxes observed at the Duke forest, NC piedmont site, were generally greater, dependent on site and season, than corresponding variables measured at either of the two southern coastal plain sites (Cary and Austin forests). Acid deposition variables observed at the latter two sites were remarkably similar, both qualitatively and quantitatively, although the sites were located 1300 km apart. A comparison of deposition fluxes of elemental nitrogen (NO3, NH4') and sulfur (5042-, SO3) components in wet and dry forms indicated that wet deposition accounts for approximately 70% of the total nitrogen and 73% of the total sulfur input on an annual equivalent basis at all sites.

  • PDF

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

Thermal Stability of $MnOx-WO_3-TiO_2$ Catalysts Prepared by the Sol-gel Method for Low-temperature Selective Catalytic Reduction

  • Sin, Byeong-Gil;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • The selective catalytic reduction (SCR) of NOx by $NH_3$ is well known as one of the most convenient, efficient, and economical method to prevent NOx emission in flue gas from stationary sources. The degradation of the reactivity is the obstacle for its real application, since high concentrations of sulfur dioxide and thermal factor would deactivate the catalyst. It is necessary to develop high stability of catalysts for low-temperature SCR. Among the transition metal oxides, $WO_3$ is known to exhibit high SCR activity and good thermal stability. The $MnOx-WO_3-TiO_2$ catalysts prepared by sol-gel method with various $WO_3$ contents were investigated for low-temperature SCR. These catalysts were observed in terms of micro-structure and spectroscopy analyses. The $WO_3$ catalyst as a promoter is used to enhance the thermal stability of catalyst since it increases the phase transition temperature of $TiO_2$ support. It was found that the addition of tungsten oxides not only maintained the temperature window of NO conversion but also increased the acid sites of catalyst.

  • PDF

A Study on Diesel Engine NOx and Soot Emission Characteristics using Different Fuel Oils

  • Nam, Jeong-Gil;Kang, Dae-Sun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1080-1088
    • /
    • 2008
  • This paper addresses some concerns faced by the shipping industry nowadays. Initially, the environmental issues were resolved and stricter regulations are now being implemented with regards to the exhaust gas, specifically nitrogen oxides (NOx) and sulfur oxides (SOx), emitted from ships. Secondly, with the increasing and unstable cost of fuel oils in the world market, it has become almost a necessity to explore on a new alternative fuel. Hence, this study was conducted. An experiment was carried-out on a fishing survey vessel with the main engine (M/E) and generator engine (G/E) operated on expensive marine gas oil (MGO). During the experiment, two pre-refinery systems were installed and different fuel oil samples were employed for the M/E and the G/E. Furthermore, the NOx emission and soot concentration were monitored and verified. The results confirmed the compatibility of some fuel oil types to the engines and meeting the emission standards. MDO, MF15 and Bunker A can be used in place of MGO for the engines(M/E, G/E).

A Study on the Estimation of Air Pollutants Emission Factors in Electric Power Plants (화력발전소의 대기오염물질 배출계수 산정 연구)

  • 김대곤;엄윤성;홍지형;이석조;석광설;이대균;이은정;방선애
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.281-290
    • /
    • 2004
  • The main purpose of this study was to characterize the air pollutants emission factors in electric power plant (EPP) using fossil fuels. The electric power plant is a major air pollution source, thus knowing the emission characteristics of electric power plant is very important to develop a control strategy. The major air pollutants of concern from EPP slacks are particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), carbon monoxide (CO) and heavy metals. Throughout the study, the following results are estimated - PM : 8.671E-05 ∼ 8.724E+01 PM emission (kg) per fuel burned (ton) - SOx : 4.149E-04∼7.877E+01 SOx emission (kg) per fuel burned (ton) - NOx 1.578E-02∼9.857E+00 NOx emission (kg) per fuel burned (ton) - CO : 3.800E-04∼1.291E+00 CO emission (kg) per fuel burned (ton) - Hg : 1.220E+01∼3.108E+02 Hg emission (mg) per fuel burned(ton) From the statistical analysis by Wilcoxon signed ranks test between the emission factors of ours and U.S. EPA's, we can yielded that : p 〉0.05.

Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions

  • Seddiek, Ibrahim S.;Elgohary, Mohamed M.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.737-748
    • /
    • 2014
  • Increasing amounts of ships exhaust gases emitted worldwide forced the International Maritime Organization to issue some restricted maritime legislation for reducing the adverse environmental impacts arising from such emissions. Consequently, ships emission reduction became one of the technical and economical challenges that facing the ships, operators. The present paper addresses the different strategies that can be used to reduce those emissions, especially nitrogen oxides and sulfur oxides. The strategies included: applying reduction technologies onboard, using of alternative fuels, and follows one of fuel saving strategies. Using of selective catalytic reduction and sea water scrubbing appeared as the best reduction technologies onboard ships. Moreover, among the various proposed alternative fuels, natural gas, in its liquid state; has the priority to be used instead of conventional fuels. Applying one of those strategies is the matter of ship type and working area. As a numerical example, the proposed methods were investigated at a high-speed craft operating in the Red Sea area between Egypt and the Kingdom of Saudi Arabia. The results obtained are very satisfactory from the point of view of environment and economic issues, and reflected the importance of applying those strategies.

Evaluation of Insulation Performance and Structural Integrity of an IMO Type C LNG Storage Tank (IMO Type C LNG 저장 탱크의 단열성능 및 구조적 건전성 평가)

  • Park, Heewoo;Park, Jinseong;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • Restrictions on the emissions of nitrogen oxides, sulfur oxides, carbon dioxide, and particulate matter from marine engines are being tightened. Each of these emissions requires different reduction technologies, which are costly and require many pieces of equipment to meet the requirements. Liquefied natural gas (LNG) fuel has a great advantage in reducing harmful emissions emitted from ships. Therefore, the marine engine application of LNG fuel is significantly increasing in new ship buildings. Accordingly, this study analyzed the internal support structure, insulation type, and fuel supply piping system of a 35 m3 International Maritime Organization C type pressurized storage tank of an LNG-fueled ship. Analysis of the heat transfer characteristics revealed that A304L stainless steel has a lower heat flux than A553 nickel steel, but the effect is not significant. The heat flux of pearlite insulation is much lower than that of vacuum insulation. Moreover, the analysis results of the constraint method of the support ring showed no significant difference. A553 steel containing 9% nickel has a higher strength and lower coefficient of thermal expansion than A304L, making it a suitable material for cryogenic containers.

Framework to Compute Vehicle Emission Costs Associated with Work Zones

  • Shrestha, K. Joseph;Adebiyi, Jeremiah;Uddin, Mohammad Moin;Sturgill, Roy
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.952-959
    • /
    • 2022
  • Active construction work zones will result in longer travel time and/or longer travel distances for road users because of reduced speed limits and/or detours. This results in increased fuel consumption and increased emissions of harmful gases such as Carbon Monoxide (CO), Nitrogen Oxides (NOx), and Sulfur Oxides (SOx), which causes discomfort to the environment and road users around the work zone. The impact of such emissions should be considered while designing work zones or determining the number of days the roadway will be allowed to be closed partially or fully. This study develops a methodology to compute additional road user costs associated with such work zones. To achieve this goal, a) an extensive literature review is conducted, b) a framework to compute emission cost is developed, c) emission rates are computed for all counties (95) of the state of Tennessee, and d) a case study is conducted to demonstrate the use of the framework to estimate the additional impact of emission because of the work zone. For the case study conducted, the emission cost was computed to be $10,653.60 for the duration of the project. State DOTs can account for such road user costs while selecting contractors using A+B bidding. Accounting for such impact of emission will also indicate the agency's willingness to consider sustainability as a part of the business practices.

  • PDF

Emission Characteristics of Odor Compounds in a Charcoal Production Kiln (숯가마 배가스 중 악취물질의 배출특성)

  • Park, Seong-Kyu;Choi, Sang-Jin;Hwang, Ui-Hyun;Lee, Jeong-Joo;Kim, Daekuen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • Exhaust gas emitted as a result of the incomplete combustion of biomass in charcoal kilns includes odor compounds as well as other air pollutants such as particulate matters, sulfur and nitrogen oxides, and carbon monoxide. A number of offensive odor compounds affect quality of life. In this study, odor emissions were investigated from biomass burning in a pilot-scale charcoal kiln and a commercial-scale kiln. Complex odor from emission source reached up to 10,000 dilutions to threshold during the study period. Combustion fume was found to contain reduced sulfur compounds, aldehydes, and volatile organic compounds. Hydrogen sulfide and methyl mercaptan were the major odorants which highly contributed to the offensive odor.

High-temperature Corrosion of CrAlSiN Films in Ar/1%SO2 Gas

  • Lee, Dong Bok;Xiao, Xiao;Hahn, Junhee;Son, Sewon;Yuke, Shi
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.246-250
    • /
    • 2019
  • Nano-multilayered $Cr_{25.2}Al_{19.5}Si_{4.7}N_{50.5}$ films were deposited on the steel substrate by cathodic arc plasma deposition. They were corroded at $900^{\circ}C$ in $Ar/1%SO_2$ gas in order to study their corrosion behavior in sulfidizing/oxidizing environments. Despite the presence of sulfur in the gaseous environment, the corrosion was governed by oxidation, leading to formation of protective oxides such as $Cr_2O_3$ and ${\alpha}-Al_2O_3$, where Si was dissolved. Iron diffused outward from the substrate to the film surface, and oxidized to $Fe_2O_3$ and $Fe_3O_4$. The films were corrosion-resistant up to 150 h owing to the formation of thin ($Cr_2O_3$ and/or ${\alpha}-Al_2O_3$)-rich oxide layers. However, they failed when corroded at $900^{\circ}C$ for 300 h, resulting in the formation of layered oxide scales due to not only outward diffusion of Cr, Al, Si, Fe and N, but also inward movement of sulfur and oxygen.