• 제목/요약/키워드: Sulfur discharge

검색결과 68건 처리시간 0.027초

Mo2C/Mo2N 나노 입자와 환원된 그래핀 옥사이드가 복합된 나노 섬유 중간층이 적용된 리튬-황 전지 (Nanofibers Comprising Mo2C/Mo2N Nanoparticles and Reduced Graphene Oxide as Functional Interlayers for Lithium-Sulfur Batteries)

  • 이재섭;양지훈;조중상
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.574-581
    • /
    • 2022
  • 리튬-황 전지의 기능성 중간층으로 그래핀과 Mo2C/Mo2N 나노입자로 구성된 나노섬유(Mo2C/Mo2N rGO NFs)를 사용하였다. Mo2C/Mo2N 나노입자는 섬유 구조 내 고르게 분산되어 리튬 폴리설파이드의 화학적 흡착을 위한 활성 사이트 역할을 함으로써 전해질로의 용출을 효과적으로 억제하였다. 또한 구조 내 매트릭스로 구성된 그래핀 나노시트는 충방전이 진행되는 동안 이온 및 전자의 빠른 이동을 보장할 뿐만 아니라 반응 시 산화/환원 반응을 원활하게 하여 높은 리튬 폴리설파이드의 재사용을 보장하였다. 그 결과 Mo2C/Mo2N rGO NFs로 코팅된 분리막을 기능성 중간층으로 사용, 순수 황 전극(황 함량 70 wt%, 황 로딩 2.1 mg cm-2)으로 제작된 리튬-황 전지는 0.1 C에서 400회 충방전 후 476 mA h g-1의 안정적인 방전 용량을 나타냈으며, 1.0 C의 높은 전류밀도에서도 574 mA h g-1의 방전용량을 나타내었다. 본 연구에서 제안된 나노구조체 합성 전략은 고성능 리튬-황 전지 용 기능성 중간층 및 다양한 에너지 저장 소재분야로의 확장이 가능하다.

대용량 에너지 저장시스템을 위한 나트륨 유황전지 (Sodium Sulfur Battery for Energy Storage System)

  • 김둘선;강성환;김준영;안주현;이창희;정기영;박윤철;김고운;조남웅
    • 전기화학회지
    • /
    • 제16권3호
    • /
    • pp.111-122
    • /
    • 2013
  • 나트륨 유황전지(NAS)는 대용량 에너지 저장시스템(energy storage system, ESS) 중 하나로서, 최근 풍력에너지, 태양에너지, 해양에너지 등 그린재생에너지의 사용증가로 ESS에 대한 수요가 급증함에 따라 NAS 전지에 대한 관심이 고조되고 있다. NAS 전지는 에너지 밀도가 높고(납 축전지밀도의 3배), 사이클 수명이 길고, 자가방전이 없어 대용량 전력저장 시스템에 적합하다. NAS 전지는 양극으로 황(Sulfur), 음극으로 나트륨(Na), 고체전해질 및 분리막으로 ${\beta}$"-알루미나($Al_2O_3$)로 구성되어 있고, 양극 활물질인 황은 부도체이기 때문에 도전재인 탄소섬유(carbon felt)에 함침시켜 양극으로 사용해야 함으로, 양극재 구성 및 특성은 전지성능에 상당한 영향을 미치게 된다. 따라서 본 논문에서는 NAS 전지의 구성, 다황화나트륨($Na_2S_x$, 방전생성물) 및 양극재의 특성, 전지 성능에 미치는 영향인자들에 대해서 알아보고자 한다.

마이크로파 방전램프의 전기적/광학적 특성 (Electrical and Optical Properties of Microwave Discharged Lamp)

  • 이종찬;황명근;배영진;허현수;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.492-494
    • /
    • 2002
  • The fundamental principles of the operation of microwave discharges that are used to convert microwave energy to broad spectrum visual light are known. In this paper, emission dependance of microwave discharges in mixture content of sulfur with noble gases was studied. It is shown that the excitation of this gaseous mixture is carried out in two phases: (1) ionization of noble gas atoms by a microwave field and (2) the consequent maintenance of slightly ionized nonequilibrium plasma by the field. These two processes have essentially various thresholds for the microwave pump. The purpose of this work is to investigate spectral properties of the high frequency discharges in a mixture sulfur vapors with noble gases.

  • PDF

The effect of pore structure and surface properties of carbon nanotube films on the performance of a lithium sulfur battery

  • Song, Hyeonjun;Hwang, Yunjae;Kumar, Vimal Tiwari;Jeong, Youngjin
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.12-17
    • /
    • 2018
  • We fabricated a Li-S battery with post-treated carbon nanotube (CNT) films which offered better support for sulfur, and investigated the effect of the surface properties and pore structure of the post-treated CNT films on Li-S battery performance. Post-treatments, i.e., acid treatment, unzip process and cetyltrimethylammonium bromide (CTAB) treatment, effectively modified the surface properties and pore structure of the CNT film. The modified pore structure impacted the ability of the CNT films to accommodate the catholyte, resulting in an increase in initial discharge capacity.

Electrochemical Performance of Lithium Sulfur Batteries with Plasticized Polymer Electrolytes based on P(VdF-co-HFP)

  • Park, Jeong-Ho;Yeo, Sang-Yeob;Park, Jung-Ki;Lee, Yong-Min
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.110-115
    • /
    • 2010
  • The plasticized polymer electrolytes based on polyvinylidene fluoride-co-hexafluoropropylene (P(VdF-co-HFP)), tetra (ethylene glycol) dimethyl ether (TEGDME), and lithium perchlorate ($LiClO_4$) are prepared for the lithium sulfur batteries by solution casting with a doctor-blade. The polymer electrolyte with EO : Li ratio of 16 : 1 shows the maximum ionic conductivity, $6.5\;{\times}\;10^{-4}\;S/cm$ at room temperature. To understand the effect of the salt concentration on the electrochemical performance, the polymer electrolytes are characterized using electrochemical impedance spectroscopy (EIS), infrared spectroscopy (IR), viscometer, and differential scanning calorimeter (DSC). The optimum concentration and mobility of the charge carriers could lead to enhance the utilization of sulfur active materials and the cyclability of the Li/S unit cell.

Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium-Sulfur Batteries

  • Liu, Ying;Lee, Dong Jun;Lee, Younki;Raghavan, Prasanth;Yang, Rong;Ramawati, Fitria;Ahn, Jou-Hyeon
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.97-102
    • /
    • 2022
  • Lithium sulfur (Li-S) batteries have attracted considerable attention as a promising candidate for next-generation power sources due to their high theoretical energy density, low cost, and eco-friendliness. However, the poor electrical conductivity of sulfur and its insoluble discharging products (Li2S2/Li2S), large volume changes, severe self-discharge, and dissolution of lithium polysulfide intermediates result in rapid capacity fading, low Coulombic efficiency, and safety risks, hindering Li-S battery commercial development. In this study, a three-dimensionally (3D) connected hierarchical porous carbon framework (HPCF) derived from waste sunflower seed shells was synthesized as a sulfur host for Li-S batteries via a chemical activation method. The natural 3D connected structure of the HPCF, originating from the raw material, can effectively enhance the conductivity and accessibility of the electrolyte, accelerating the Li+/electron transfer. Additionally, the generated micropores of the HPCF, originated from the chemical activation process, can prevent polysulfide dissolution due to the limited space, thereby improving the electrochemical performance and cycling stability. The HPCF/S cell shows a superior capacity retention of 540 mA h g-1 after 70 cycles at 0.1 C, and an excellent cycling stability at 2 C for 700 cycles. This study provides a potential biomass-derived material for low-cost long-life Li-S batteries.

고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극 (Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries)

  • 신윤정;정현서;김은미;김태윤;정상문
    • Korean Chemical Engineering Research
    • /
    • 제61권3호
    • /
    • pp.426-438
    • /
    • 2023
  • 차세대 전지로 주목받는 리튬-황 전지는 높은 에너지 밀도를 갖는 반면, 황의 절연 특성, 셔틀 현상 그리고 부피팽창으로 인하여 상용화에 어려움이 있다. 본 연구에서는 경제적이고 간단한 진공여과 방법으로 바인더와 집전체가 없는 프리스탠딩 전극을 제조하였고 탄소나노튜브(CNT)를 황의 전기전도도 향상을 위하여 사용하였다. 여기서 CNT는 집전체와 도전재 역할을 동시에 수행하였다. 추가로 리튬폴리설파이드의 흡착에 용이한 금속산화물(MOx, M=Ni, Mg)을 CNT/S 전극에 첨가함으로써 리튬-황 전지의 셔틀반응을 억제하였다. MOx@CNT/S 전극은 금속산화물을 도입하지 않은 CNT/S 전극에 비해 높은 용량 특성과 사이클 안정성을 나타내었으며, 이는 금속산화물의 우수한 리튬폴리설파이드 흡착 특성으로 인하여 황 활물질의 손실을 억제한 결과이다. MOx@CNT/S 전극 중에서 NiO를 도입한 NiO@CNT/S 전극은 1 C에서 780 mAh g-1의 높은 방전용량을 나타내었고 200 사이클 후 134 mAh g-1으로 극심한 용량 감소가 나타났다. MgO@CNT/S 전극은 비록 초기 사이클에 544 mAh g-1의 낮은 방전용량을 나타냈지만, 200 사이클까지 용량을 90% 유지하는 우수한 사이클 안정성을 나타내었다. 고용량과 사이클 안정성 확보를 위하여 Ni:Mg를 0.7:0.3의 비율로 혼합한 Ni0.7Mg0.3O@CNT/S 전극은 755 mAh g-1 (1 C)의 초기 방전용량과 200 사이클 후에도 90% 이상의 용량 유지율을 나타내었다. 따라서 이원 금속산화물의 CNT/S 프리스탠딩으로의 적용은 고용량 특성뿐만 아니라 가장 큰 문제인 리튬폴리설파이드의 용출을 효과적으로 개선하여 경제적이고 고성능 리튬-황 전지의 개발이 가능함을 시사한다.

DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용 (Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge)

  • 최유리;김동주;김교선
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte

  • Lee, Jongkwan;Heo, Kookjin;Song, Young-Woong;Hwang, Dahee;Kim, Min-Young;Jeong, Hyejeong;Shin, Dong-Chan;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.199-207
    • /
    • 2022
  • Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.