Browse > Article
http://dx.doi.org/10.9713/kcer.2022.60.4.574

Nanofibers Comprising Mo2C/Mo2N Nanoparticles and Reduced Graphene Oxide as Functional Interlayers for Lithium-Sulfur Batteries  

Lee, Jae Seob (Department of Engineering Chemistry, Chungbuk National University)
Yang, Ji Hoon (Department of Engineering Chemistry, Chungbuk National University)
Cho, Jung Sang (Department of Engineering Chemistry, Chungbuk National University)
Publication Information
Korean Chemical Engineering Research / v.60, no.4, 2022 , pp. 574-581 More about this Journal
Abstract
Nanofibers comprising reduced graphene oxide (rGO) and Mo2C/Mo2N nanoparticles (Mo2C/Mo2N rGO NFs) were prepared for a functional interlayer of Li-S batteries (LSBs). The well-dispersed Mo2C and Mo2N nanoparticles in the nanofiber structure served as active polar sites for efficient immobilization of dissolved lithium polysulfide. The rGO nanosheets in the structure also provide conductive channels for fast ion/electron transport during charging-discharging and ensured reuse of lithium polysulfide during redox reactions through a fast charge transfer process. As a result, the cell assembled with Mo2C/Mo2N rGO NFs-coated separator and pure sulfur electrode (70 wt% of sulfur content and 2.1 mg cm-2 of sulfur loading) showed a stable discharge capacity of 476 mA h g-1 after 400 charge-discharge cycles at 0.1 C. Furthermore, it exhibited a discharge capacity of 574 mA h g-1 even at a high current density of 1.0 C. Therefore, we believe that the proposed unique nanostructure synthesis strategy could provide new insights into the development of sustainable and highly conductive polar materials as functional interlayers for high performance LSBs.
Keywords
Nanofiber; Electrospinning; Functional interlayer; Cathodes; Lithium-sulfur batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saroha, R., Oh, J. H., Seon, Y. H., Kang, Y. C., Lee, J. S., Jeong, D. W. and Cho, J. S., "Freestanding Interlayers for Li-S Batteries:Design and Synthesis of Hierarchically Porous N-Doped C Nanofibers Comprising Vanadium Nitride Quantum Dots and MOF-Derived Hollow N-Doped C Nanocages," J. Mater. Chem. A., 9(19), 11651-11664(2021).   DOI
2 Chen, G., Li, Y., Zhong, W., Zheng, F., Hu, J., Ji, X., Liu, W., Yang, C., Lin, Z. and Liu, M., "MOFs-Derived Porous Mo2C-C Nano-Octahedrons Enable High-Performance Lithium-Sulfur Batteries," Energy Stor. Mater., 25, 547-554(2020).   DOI
3 Lv, L. P., Guo, C. F., Sun, W. and Wang, Y., "Strong SurfaceBound Sulfur in Carbon Nanotube Bridged Hierarchical Mo2CBased MXene Nanosheets for Lithium-Sulfur Batteries," Small, 15(3), 1804338(2019).
4 Jiang, Y., Chen, F., Gao, Y., Wang, Y., Wang, S., Gao, Q., Jiao, Z., Zhao, B. and Chen, Z., "Inhibiting the Shuttle Effect of Li-S Battery with a Graphene Oxide Coating Separator: Performance Improvement and Mechanism Study," J. Power Sources, 342, 929-938(2017).   DOI
5 Vizintin, A., Lozinsek, M., Chellappan, R. K., Foix, D., Krajnc, A., Mali, G., Drazic, G., Genorio, B., Dedryvere, R. and Dominko, R., "Fluorinated Reduced Graphene Oxide as an Interlayer in Li-S Batteries," Chem. Mater., 27(20), 7070-7081(2015).   DOI
6 Zhou, J., Yu, X., Fan, X., Wang, X., Li, H., Zhang, Y., Li, W., Zheng, J., Wang, B. and Li, X., "The Impact of the Particle Size of a Metal-Organic Framework for Sulfur Storage in Li-S Batteries," J. Mater. Chem. A., 3(16), 8272-8275(2015).   DOI
7 Zheng, X.-X., Zhao, S.-X., Yang, J.-L., Lu, Y.-M., Wu, Q.-L. and Zeng, X.-T., "Facile Synthesis of Porous Co3O4 Nanoflakes as an Interlayer for High Performance Lithium-Sulfur Batteries," Dalton Trans. 49(17), 5677-5683(2020).   DOI
8 Zhuang, R., Yao, S., Liu, M., Wu, J., Shen, X. and Li, T., "β-Molybdenum Carbide/Carbon Nanofibers as a Shuttle Inhibitor for Lithium-Sulfur Battery with High Sulfur Loading," Int. J. Energy Res., 43(13), 7655-7663(2019).
9 1. Kong, W., Yan, L., Luo, Y., Wang, D., Jiang, K., Li, Q., Fan, S. and Wang, J., "Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance Li-S Batteries," Adv. Funct. Mater., 27(18), 1606663(2017).
10 Saroha, R., Oh, J. H., Lee, J. S., Kang, Y. C., Jeong, S. M., Kang, D. W., Cho, C. and Cho, J. S., "Hierarchically Porous Nanofibers Comprising Multiple Core-Shell Co3O4@Graphitic Carbon Nanoparticles Grafted within N-Doped CNTs as Functional Interlayers for Excellent Li-S Batteries," Chem. Eng. J., 426, 130805(2021).
11 Kong, L. L., Zhang, Z., Zhang, Y. Z., Liu, S., Li, G. R. and Gao, X. P., "Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium-Sulfur Battery," ACS Appl. Mater. Interfaces 8(46), 31684-31694(2016).   DOI
12 Hu, G., Xu, C., Sun, Z., Wang, S., Cheng, H. M., Li, F. and Ren, W., "3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries," Adv. Mater., 28(8), 1603-1609(2015).   DOI
13 Wang, X., Wang, Z. and Chen, L., "Reduced Graphene Oxide Film as a Shuttle-Inhibiting Interlayer in a Lithium-Sulfur Battery," J. Power Sources, 242, 63-69(2013).
14 Kim, K., Kim, P. J., Youngblood, J. P. and Pol, V. G., "Surface Functionalization of Carbon Architecture with Nano-MnO2 for Effective Polysulfide Confinement in Lithium-Sulfur Batteries," ChemSusChem 11(14), 2375-2381(2018).   DOI
15 Wang, J., Wu, T., Zhang, S., Gu, S., Jin, J. and Wen, Z., "MetalOrganic-Framework-Derived N-C-Co Film as a Shuttle-Suppressing Interlayer for Lithium Sulfur Battery," Chem. Eng. J., 334, 2356-2362(2018).   DOI
16 Sun, Z., Zhang, J., Yin, L., Hu, G., Fang, R., Cheng, H. M. and Li, F., "Conductive Porous Vanadium Nitride/Graphene Composite as Chemical Anchor of Polysulfides for Lithium-Sulfur Batteries," Nat. Commun., 8, 14627(2017).
17 Oh, S. H., Park, S. M., Kang, D.-W., Kang, Y. C. and Cho, J. S., "Fibrous Network of Highly Integrated Carbon Nanotubes/MoO3 Composite Bundles Anchored with MoO3 Nanoplates for Superior Lithium Ion Battery Anodes," J. Ind. Eng. Chem., 83, 438-448(2020).   DOI
18 Yang, J. L., Cai, D. Q., Lin, Q., Wang, X. Y., Fang, Z. Q., Hyang, L., Wang, Z. J., Hao, X. G., Zhao, S. X., Li, J., Cao, G. Z. and Lv, W., "Regulating the Li2S Deposition by Grain Boundaries in Metal Nitrides for Stable Lithium-Sulfur Batteries," Nano Energy, 91, 106669(2022).
19 Wang, D., Cao, Q., Jing, B., Wang, X., Huang, T., Zeng, P., Jiang, S., Zhang, Q. and Sun, J., "A Freestanding Metallic Tin-Modified and Nitrogen-Doped Carbon Skeleton as Interlayer for Lithium-Sulfur Battery," Chem. Eng. J., 399, 125723(2020).
20 Zhuang, R., Yao, S., Shen, X. and Li, T., "A Freestanding MoO2-Decorated Carbon Nanofibers Interlayer for Rechargeable Lithium Sulfur Battery," Int. J. Energy Res., 43(3), 1111-1120(2019).   DOI
21 Liang, G., Wu, J., Qin, X., Liu, M., Li, Q., He, Y.-B., Kim, J.-K., Li, B. and Kang, F., "Ultrafine TiO2 Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium-Sulfur Battery," ACS Appl. Mater. Interfaces 8(35), 23105-23113(2016).   DOI
22 Liu, X., Huang, J.-Q., Zhang, Q. and Mai, L., "Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries," Adv. Mater 29(20), 1601759(2017).
23 Yang, J. L., Zhao, S. X., Lu, Y. M., Zeng, X. T., Lv, W. and Cao, G. Z., "In-Situ Topochemical Nitridation Derivative MoO2-Mo2N Binary Nanobelts as Multifunctional Interlayer for FastKinetic Li-Sulfur Batteries," Nano Energy, 68, 104356(2020).
24 Xiao, Z., Yang, Z., Wang, L., Nie, H., Zhong, M., Lai, Q., Xu, X., Zhang, L. and Huang, S., "A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries," Adv. Mater., 27(18), 2891-2898(2015).   DOI
25 Zeng, X., Gao, X., Li, G., Sun, M., Lin, Z., Ling, M,, Zheng, J. and Liang, C., "Conductive Molybdenum Carbide as the Polysulfide Reservoir for Lithium-Sulfur Batteries," J. Mater. Chem. A., 6(35), 17142-17147(2018).   DOI
26 Kim, J.-K., "Hybrid Gel Polymer Electrolyte for High-Safety Lithium-Sulfur Batteries," Mater. Lett., 187, 40-43(2017).   DOI
27 Chen, L., Yu, H., Li, W., Dirican, M., Liu Y. and Zhang, X., "Interlayer Design Based on Carbon Materials for Lithium-Sulfur Batteries: A Review," J. Mater. Chem. A., 8(21), 10709-10735(2020).   DOI
28 Ma, G., Wen, Z. Wang, Q., Shen, C., Peng, P., Jin, J. and Wu, X., "Enhanced Performance of Lithium Sulfur Battery with SelfAssembly Polypyrrole Nanotube Film as the Functional Interlayer," J. Power Sources, 273, 511-516(2015).   DOI
29 Zhang, K., Qin, F., Fang, J., Li, Q., Jia, M., Lai, Y., Zhang, Z. and Li, J., "Nickel Foam as Interlayer to Improve the Performance of Lithium-Sulfur Battery," J. Solid State Electrochem., 18, 1025-1029(2014).   DOI
30 Park, G. D., Cho, J. S., Kang, Y. C., "Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion," ACS Appl. Mater. Interfaces 7(30), 16842-16849(2015).   DOI
31 Fan, L., Li, M., Li, X., Xiao, W., Chen, Z. and Lu, J., "Interlayer Material Selection for Lithium-Sulfur Batteries," Joule, 3(2), 361-386(2019).   DOI
32 Cho, J. S., Park, S. K., Jeon, K. M., Piao, Y. and Kang, Y. C., "Mesoporous Reduced Graphene Oxide/WSe2 Composite Particles for Efficient Sodium-Ion Batteries and Hydrogen Evolution Reactions," Appl. Surf. Sci., 459, 309-317(2018).   DOI
33 Huang, J. Q., Zhang, Q. and Wei, F., "Multi-Functional Separator/Interlayer System for High-Stable Lithium-Sulfur Batteries: Progress and Prospects," Energy Stor. Mater., 1, 127-145(2015).
34 Liu, M., Yang, Z., Sun, H., Lai, C., Zhao, X., Peng, H. and Liu, T., "A Hybrid Carbon Aerogel With Both Aligned and Interconnected Pores as Interlayer for High-Performance Lithium-Sulfur Batteries," Nano Res., 9, 3735-3746(2016).   DOI
35 Yu, B., Chen, D., Wang, Z., Qi, F., Zhang, X., Wang, X., Hu, Y., Wang, B., Zhang, W., Chen, Y., He, J. and He, W., "Mo2C Quantum Dots@Graphene Functionalized Separator Toward HighCurrent-Density Lithium Metal Anodes for Ultrastable Li-S Batteries," Chem. Eng. J., 399, 125837(2020).
36 Lee, J. S., Jo, M. S., Saroha, R., Jung, D. S., Seon, Y. H., Lee, J. S., Kang, Y. C., Kang, D. W. and Cho, J. S., "Hierarchically Well-Developed Porous Graphene Nanofibers Comprising NDoped Graphitic C-Coated Cobalt Oxide Hollow Nanospheres as Anodes for High-Rate Li-Ion Batteries," Small, 16(32), 2002213(2020).