• Title/Summary/Keyword: Sulfate ($SO{_4}^{2-}$)

Search Result 806, Processing Time 0.022 seconds

Purification and Properties of Arylsulfatase of Serratia marcescens (Serratia marcens Arylsulfatase의 정제와 성질)

  • Yim, Moo-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.4
    • /
    • pp.177-184
    • /
    • 1977
  • Arylsulfatase catalyzes the release of SO$\sub$4//sup2/- from sulfate esters of simple phenols. Arylsolfatase occurs widely in animal tissues and in microorganisms including soil bacteria. Its widespread distribution suggests that it has a rather fundamental function and environmental meaning. It has been shown previously that arylsulfatase of Klebsiella was purified and characterized. A condition of arylsulfatase synthesis was tested with several strains of Serratia. Serratia marcescens could not utilize some sugars, such as xylose, rhamnose, glucosamine and arabinose hut glucose and mannitol as a sole carbon source. However, arylsulfatase synthesis was repressed by glucose but not by mannitol. The enzyme synthesis was repressed ob inorganic sulfate and methionine, and this repression was relieved by addition of tyramine. Arylsulfatase of S. marcescen was purified by fractionation with ammonium sulfate and followed by chromatographies on DEAE-Cellulose CM-Cellulose, and DEAE-Sephadex A-25. The molecular weight of arylsulfatase was determined to be 46,000 by SDS-Gel electrophoresis and 49,000 by Sephadex G-100 column chromatography. The enzyme showed some different properties with that of K. aerogenes. The activity was maximum at pH 6.8. The Km and Vmax values for p-nitrophenyl sulfate were 2.5${\times}$10$\^$-4/ M and 20 nmoles/min/mg protein, respectively. The enzyme showed high activities toward phenyl sulfate, ο-and p-nitro phenyl sulfates, and p-nitrocatechol sulfate. The inhibition of enzyme was strongly affected by hydroxylamine, inorganic fluoride, sulfide and phosphate, but by inorganic sulfate. Like Klebsiella arylsulfatase, tyramine, octopamine, and dopamine gave signifcant inhibitory effect.

  • PDF

Estimate of Regional and Broad-based Sources for PM2.5 Collected in an Industrial Area of Japan

  • Nakatsubo, Ryouhei;Tsunetomo, Daisuke;Horie, Yosuke;Hiraki, Takatoshi;Saitoh, Katsumi;Yoda, Yoshiko;Shima, Masayuki
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.126-139
    • /
    • 2014
  • In order to estimate the influence of sources on $PM_{2.5}$ in the industrial area of Japan, we carried out a source analysis using chemical component data of $PM_{2.5}$. $PM_{2.5}$ samples were collected intermittently at an industrial area in Japan from July 2010 to November 2012. Water soluble ions ($Cl^-$, $NO_3{^-}$, $SO{_4}^{2-}$, $Na^+$,$NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$), elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sb, Pb), and carbonaceous species (OC, EC) of the $PM_{2.5}$ (a total of 198 samples) were analyzed. Positive Matrix Factorization (PMF) model was applied to the data of those chemical components to identify the source of $PM_{2.5}$. At this observation site, nine factors were extracted. The major contributors of $PM_{2.5}$ were secondary sulfate 1, in which loading factors of $SO{_4}^{2-}$ and $NH_4{^+}$ were large (percentage source contribution: 20.9%), traffic, in which loading factors of OC (organic carbon) and EC (elemental carbon) were large (20.8%), secondary sulfate 2, in which loading factors of K and $SO{_4}^{2-}$ were large (8.0%), steel mills (7.8%), secondary chloride and nitrate (7.0%), soil (5.0%), heavy oil combustion (3.8%), sea salt (3.8%), and coal combustion (2.3%). The conditional probability function (CPF) and the potential source contribution function (PSCF) were carried out to examine the influence of a regional source and a broad-based source, respectively. CPF results supported local source influences such as steel mills, sea salt, traffic, coal combustion, and heavy oil combustion. PSCF results suggested that ships in the East China Sea, an industrial area of the east coastal region of China, and an active volcano in the Kyushu region of Japan were potential regional sources of secondary sulfate 1. Secondary sulfate 2 was affected by the burning of biomass fields and by coal combustion in Chinese urban areas such as Beijing, Hebei, and western Inner Mongolia. Source characterization using continuous data from one site showed a potential source representing fossil fuel combustion is affected both by regional and broad-based sources.

Co-deposition of Si Particles During Electrodeposition of Fe in Sulfate Solution (황산철 도금액 중 Si 입자의 공석 특성)

  • Moon Sung-Mo;Lee Sang-Yeal;Lee Kyu-Hwan;Chang Do-Yon
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.319-325
    • /
    • 2004
  • Fe thin films containing Si particles were prepared on metallic substrates by electrodeposition method in sulfate solutions and the content of codeposited Si particles in the films was investigated as a function of applied current density, the content of Si particels in the solution, solution pH, solution temperature and concentration of $FeSO_4$$7H_2$O in the solution. The amount of Si codeposited in the film was not dependent on the applied current density, solution pH and solution temperature, while it was dependent on the content of Si particles in the solution and the concentration of $FeSO_4$$7H_2$O in the solution. The amount of Si codeposited in the film increased with increasing content of Si particles in the solution but reached a maximum value of about 6 wt% when the content of Si particles in the solution exceeds 100 g/l. On the other hand, the content of Si codeposited in the film increased up to about 17 wt% with decreasing concentration of $FeSO_4$$7H_2$O in the solution. These results would be applied to the fabrication of very thin Fe-6.5 wt% Si sheets for electrical applications.

Autotrophic Nitrite Denitrification Using Sulfur Particles for Treatment of Wastewaters with Low C/N Ratios (Batch Tests) (C/N비가 낮은 하.폐수에서 황입자를 이용한 아질산성질소 탈질 연구(회분식 실험))

  • Yoon, Seung-Joon;Kang, Woo-Chang;Bae, Woo-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.851-856
    • /
    • 2010
  • A sulfur utilizing nitrite denitrification process could be placed after the shortcut biological nitrogen removal (SBNR) process. In this study, removal of nitrite using sulfur oxidizing denitrifier was characterized in batch tests with granular elemental sulfur as an electron donor and nitrite as an electro acceptor. At sufficient alkalinity, initial nitrite nitrogen concentration of 100 mg/L was almost completely reduced in the batch reactor within a incubation time of 22 h. Sulfate production with nitrite was 4.8 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N, while with nitrate 13.5 g ${SO_4}^{2-}/g$ ${NO_3}^-$-N. Under the conditions of low alkalinity, nitrite removal was over 95% but 15 h of a lag phase was shown. For nitrate with low alkalinity, no denitrification occurred. Sulfate production was 2.6 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N and alkalinity consumption was 1.2 g $CaCO_3/g$ ${NO_2}^-$. The concentration range of organics used in this experiment did not inhibit autotrophic denitrification at both low and high alkalinity. This kind of method may solve the problems of autotrophic nitrate denitrification, i.e. high sulfate production and alkalinity deficiency, to some extent.

Fermentative Hydrogen Production under Various $SO_4^{2-}$ Concentration using Anaerobic Mixed Microflora (혐기 혼합균주에서 황산염 농도변화에 따른 수소 발효 특성)

  • Hwang, Jae-Hoon;Choi, Jeong-A;Lee, Jong-Hak;Jeong, Tae-Young;Cha, Gi-Cheol;Song, Ho-Cheol;Yong, Bo-Young;Kim, Dong-Jin;Jeon, Byong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.6
    • /
    • pp.434-441
    • /
    • 2009
  • The effect of varying sulfate concentration on continuous fermentative hydrogen production was studied using enriched mixed microflora in continuously fed reactor. Glucose was used as a model substrate for carbohydrates, and hydraulic retention time (HRT) was maintained at 1, 0.5, 0.25 day, respectively. Sulfate concentration was 0${\sim}$20,000 mg/L and the operating pH was maintained at 5.5. The experimental results indicate that hydrogen production is not affected by high sulfate concentration and shorter HRT of 0.25 day enhance hydrogen production. At HRT 1, 0.5, 0.25 day, the hydrogen production rate and hydrogen yield were 2.6, 4.6, 9.4 L/day, and 2.0, 1.8, 1.6 mol $H_2$/mol glucose, respectively. Residual sulfate content was 96${\sim}$98, 95${\sim}$97, and 94${\sim}$97% at HRT 1, 0.5, 0.25 day which show that no sulfate reduction occurred in the reactor during the experiments. Results of Fluorescence In Situ Hybridization (FISH) may indicate the presence of HPB (hydrogen producing bacteria) under all experimental conditions. However, SRB (sulfate reducing bacteria) were not found.

Effect of Current Density and Current Efficiency on the Decorative Property of Chromium Deposits using Oxalic Acid (수산을 사용한 크롬도금의 광택성에 미치는 전류밀도와 전류효율의 영향)

  • Oh, L.S.;Park, J.D.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.89-96
    • /
    • 2001
  • Decorative property of chromium deposition from oxalic acid bath containing chromium oxide and ammonium sulfate, has been examined over a wide range of bath compositions and plating conditions. The followings were determined as optimum bath composition, $CrO_3\;200{\sim}250g/{\ell},\;H_2C_2O_4{\cdot}2H_2O\;500{\sim}700g/{\ell},\;(NH_4){_2}SO_4\;40{\sim}120g/{\ell}$, and operation conditions; pH $2.0{\sim}2.5$, current density of $15{\sim}250Adm^2 $ at the bath temperatures of $30{\sim}80^{\circ}C$. Bright chromium deposits were obtained over a wide range of ammonium sulfate concentration, bath temperature, and current density. The current efficiency decreased with increasing current density and bath pH, and increased with Increasing bath temperature. The highest current efficiency was obtained in the bath containing $80g/{\ell}$ of ammonium sulfate. Bright chromium deposits were not obtained at conditions of all the highest current efficiencies.

  • PDF

The Treatment of Flue SO$_2$ Gas by Cu Powder (I) (구리 분말을 이용한 $SO_2$ 배기가스의 처리(I))

  • 정국삼;김학성;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1986
  • To remove sulfur dioxide from flue gas by the method of metal oxide, copper powder of average diameter $2.4\mu\textrm{m}$and $51\mu\textrm{m}$ were used in a fixed bed reactor over a, temperature range of $300^{\circ}C-500^{\circ}C$. Copper oxide reacts with sulfur dioxide producing cupric sulfate and it can be regenerated from the latter by using hydrogen or methane. Experimental results showed that the reaction rate was increased by the increase of reaction temperature in the range of $300^{\circ}C-422^{\circ}C$ and the removal efficiency of sulfur dioxide was high in case of small size copper particle. However the removal efficiency was decreased at higher temperature due to decomposition of cupric sulfate. The rate controlling step of this reaction was chemical reaction and deactivating catalysts model can be applied to this reaction. The rate constants for this reaction and deactivation are as follows : k=8,367exp(-10,298/RT) Kd=2.23exp(-8,485/RT)

  • PDF

Glutathione Concentration as Affected by Sulfate Supply Level and its Relationship with Sulfate Uptake and Assimilatory Enzymes Activity in Rape Plants (유채에서 황 공급수준에 따른 글루타치온 함량의 변화가 황산염 흡수 및 동화관련 효소활력에 미치는 영향)

  • Li, Lu-Shen;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • The glutathione (GSH) concentration in leaves of different maturities and roots of forage rape (Brassica napus L.) supplied with four levels of external $SO_4^{2-}$ (0, 0.1, 1.0 and 2.0 mM) supply were measured. The relationships of GSH concentration with $SO_4^{2-}$ uptake, ATP sulfurylase (ATPS) and O-acteylserine (thiol) lyase (OASTL) activity were also assessed. The $SO_4^{2-}$ uptake increased in parallel with the external $SO_4^{2-}$ supply, while protein concentration was not significantly changed. The ATPS activity increased continuously with decreasing $SO_4^{2-}$ supply from 2.0 to 0 mM, while the OASTL activity decreased significantly only at S-deficient conditions (0 and 0.1 mM). The GSH concentration in the young leaves, middle leaves and roots continuously increased (except for between 1.0 and 2.0 mM in the middle leaves and roots) as the external S supply was increased, but no significant changes occurred in the old leaves. The increased endogenous GSH concentration, affected by the $SO_4^{2-}$ supply level, was significantly related with the decrease in ATPS activity in both leaves and roots, and the decrease in OASTL activity only in leaves..

Separation of Lanthanum(III) by Selective Precipitation from Sulfuric Acid Solution Containing Iron(III) (황산철(III)용액에서 란타넘(III)의 선택적 침전 분리)

  • Song, Si Jeong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.31-38
    • /
    • 2021
  • To investigate the separation of La(III) from sulfuric acid solutions containing Fe(III), rare earth double salt precipitation experiments were performed by adding sodium sulfate. In this work, the effect of sodium sulfate, Fe(III), and La(III) concentrations; reaction temperature; and time was investigated. The extent of precipitation of La(III) was proportional to the concentrations of Na+ and SO42- in the solution. As the reaction temperature increased to 100 ℃, the extent of precipitation of La(III) increased. The extent of precipitation of Fe(III) decreased with increasing reaction time. The concentration ratio of Fe(III) to La(III) did not have a significant effect on the precipitation of La(III). Our results indicate that it is possible to separate La(III) from a ferric sulfate solution through selective precipitation by adding sodium sulfate.

An Experimental Study on the Ion Reaction and the Electrochemical Rebar-Corrosion in Aqueous Solution Mixed with Sulfate and Chloride Ion-Reactive Material (황산, 염소이온 반응 소재 혼입 수용액에서의 이온반응성 및 전기화학적 철근 부식에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kang, Tae-Won;Lim, Chang-Gil;Kim, Hong-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this study, amine derivatives and ion exchange resins were selected to actively control penetration ions ($SO{_4}^{2-}$, $Cl^-$) as the element technology of repair materials for concrete structures in drainage environments. Ions ($SO{_4}^{2-}$, $Cl^-$) adsorption performance and corrosion resistance of calcium hydroxide solution with amine derivative and ion exchange resin were confirmed by ion chromatography and potentiostat analysis. As a result of the experiment, it was confirmed that the amine derivative is excellent in the adsorption of chlorine ion and the ion exchange resin is excellent in the adsorption of sulfate ion. It has been confirmed that corrosion resistance can be increased by proper combination of two materials in the calcium hydroxide solution containing sulfate ion and chloride ion simulating sewage environment.