Browse > Article
http://dx.doi.org/10.7844/kirr.2021.30.2.31

Separation of Lanthanum(III) by Selective Precipitation from Sulfuric Acid Solution Containing Iron(III)  

Song, Si Jeong (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
Publication Information
Resources Recycling / v.30, no.2, 2021 , pp. 31-38 More about this Journal
Abstract
To investigate the separation of La(III) from sulfuric acid solutions containing Fe(III), rare earth double salt precipitation experiments were performed by adding sodium sulfate. In this work, the effect of sodium sulfate, Fe(III), and La(III) concentrations; reaction temperature; and time was investigated. The extent of precipitation of La(III) was proportional to the concentrations of Na+ and SO42- in the solution. As the reaction temperature increased to 100 ℃, the extent of precipitation of La(III) increased. The extent of precipitation of Fe(III) decreased with increasing reaction time. The concentration ratio of Fe(III) to La(III) did not have a significant effect on the precipitation of La(III). Our results indicate that it is possible to separate La(III) from a ferric sulfate solution through selective precipitation by adding sodium sulfate.
Keywords
Rare earth double salts; Iron(III); La(III); $Na_2SO_4$; Precipitation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu, Z., Pranolo, Y. and Cheng, C. Y., 2015 : Separation of uranium and thorium from rare earths for rare earth production - A review, Miner. Eng., 77, pp.185-196.   DOI
2 Su, J., Gul, X., Gao, Y., et al., 2020 : Recovery of thorium and rare earths from leachate of ion-absorbed rare earth ores radioactive ores residues with N1923 and Cyanex® 572, J. Rare Earths, pp.1-9.
3 Qi, D., 2018 : Hydrometallurgy of Rare Earths, pp.671-741, 1st Edition, Elsevier, Amsterdam.
4 Kul, M., Topkaya, Y. and Karakaya, I., 2008 : Rare earth double sulfates from pre-concentrated bastnasite, Hydrometallurgy, 93, pp.129-135.   DOI
5 Lyman, J. W. and Palmer, G. R., 1993 : Recycling of Rare Earths and Iron from NdFeB Magnet Scrap, High Temp. Mat. Process, 11(1-4), pp. 175-187.   DOI
6 Porvali, A., Wilson, B. P. and Lundstrom, M., 2017 : Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate, Waste. Manage., 71, pp.381-389.
7 Porvali, A., Agarwal, V. and Lundstrom, M., 2019 : Circulation of Sodium Sulfate Solution Produced During NiMH battery Waste Processing, Mining. Metall. Explor., 36, pp.979-991.
8 Das, G., Lencka, M.M., Eslamimanesh, A., et al., 2019 : Rare earth sulfates in aqueous systems: Thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature renges, J. Chem. Thermodyn., 131, pp.49-79.   DOI
9 Silva, R. G., Morais, C. A. and Oliveira, E. D., 2019 : Selective precipitation of rare earth from non-purified and purified sulfate liquors using sodium sulfate and disodium hydrogen phosphate, Miner. Eng., 134, pp.402-416.   DOI
10 Senanayake, G., Jayasekera S, Bandara A.M.T.S., et al., 2016 : Rare earth metal ion solubility in sulphate-phosphate solutions of pH range-0.5 to 5.0 relevant to processing fluorapatite rich concentrates: Effect of calcium, aluminium, iron and sodium ions and temperature up to 80℃, Miner. Eng., 98, pp.169-176.   DOI
11 Smith, R.M., Martell, A.E., Motekaitis, R.J., 2004 : NIST standard reference database 46. NIST Critical Selected Stability Constants of Metal Complexes Database: Version 8.0.
12 Evans, K., 2016 : The History, Challenges, and New Developments in the Management and Use of Bauxite Residue, J. Sustain. Metall., 2, pp.316-331.   DOI
13 Samal, S., Ray, A. K. and Bandopadhyay, A., 2013 : Proposal for resources, utilization and processes of red mud in India - A review, Int. J. Miner. Process., 118, pp. 43-55.   DOI
14 Hua, Y., Heal, K. V. and Friesl-Hanl, W., 2017 : The use of red mud as an immobilizer for metal/metalloid-contaminated soil: A review, J. Hazard. Mater., 325, pp.17-30.   DOI
15 Menzies, N. W., Fulton, I. M. and Morrell, W. J., 2004 : Seawater Neutralization of Alkaline Bauxite Residue and Implication for Revegetation, J. Environ. Qual., 33(5), pp. 1877-1884.   DOI
16 Hanahan, C., McConchie, D., Pohl, J., et al., 2004 : Chemistry of Seawater Neutralization of Bauxite Refinery Residues (Red Mud), Environ. Eng. Sci., 21(2), pp.125-138.   DOI
17 Wood, S. A., 1990 : The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure, Chem. Geol., 88(1-2), pp.99-125.   DOI
18 Spedding, F. H. and Jaffe, S., 1954 : Conductances, Solubilities and Ionization Constants of Some Rare Earth Sulfates in Aqueous Silutions at 25°, J. Am. Chem. Soc., 76(3), pp.882-884.   DOI
19 Chen, S., Zhao, L., Wang, M., et al., 2020 : Effects of iron and temperature on solubility of light rare earth sulfates in multicomponent system of Fe2(SO4)3-H3PO4-H2SO4 synthetic solution, J. Rare Earth., 38(11), pp. 1243-1250.   DOI
20 Turner, D. R., Whitfield, M. and Dickson, A. G., 1981 : The equilibrium speciation of dissolved components in freshwater and sea water at 25℃ and 1 atm pressure, Geochim. Cosmochim. Acta, 45(6), pp.855-881.   DOI
21 Grafe. M., Power, G. and Klauber. C., 2011 : Bauxite residue issues: III. Alkalinity and associated chemistry, Hydrometallurgy, 108(1-2), pp.60-79.   DOI
22 Narayanan, R. P. N., Kazantzis, N. K. and Emmert, M. H., 2018 : Selective Process Steps for the Recovery of Scandium from Jamaican Bauxite Residue (Red Mud), ACS Sustain. Chem. Eng., 6(1), pp.1478-1488.   DOI
23 A.C. Ni'am, Y.F. Wang, S.W. Chen, et al., 2020 : Simultaneous recovery of rare earth elements from waste permanent magnets (WPMs) leach liquor by solvent extraction and hollow fiber supported liquid membrane, Chem. Eng. Process, 148(107831), pp.1-10.
24 Kolodynska, D. and Hubicki D. F. Z., 2020 : Evaluation of possible use of the macroporous ion exchanger in the adsorption process of rare earth elements and heavy metal ions from spent batteries solutions, Chem. Eng. Process, 147(107767), pp.1-14.
25 Provali, A., Agarwal, V. and Lundstrom, M., 2020 : REE(III) recovery from spent NiMH batteries as REE double sulfates and their simultaneous hydrolysis and wet-oxidation, J. Waste. Manag., 107, pp.66-73.   DOI
26 Okamura, H. Mizuno, M., Hirayama, N., et al., 2020 : Synergistic Enhancement of the Extraction and Separation Efficiencies of Lanthanoid(III) Ions by the Formation of Charged Adducts in an Ionic Liquid, Ind. Eng. Chem. Res., 59(1), pp.329-340.   DOI