• Title/Summary/Keyword: Subunit C

Search Result 822, Processing Time 0.023 seconds

A Study on the Distribution of Cytochrome-c-oxidase Subunit in the Cristae of Mitochondria (미토콘드리아 크리스테에 존재하는 cytochrome-c-oxidase의 단백질 소단위 분포에 관한 연구)

  • Kim, Soo-Jin;Lee, Ji-Hyon;Chung, Cha-Kwon
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.41-51
    • /
    • 1994
  • The topology of the enzyme has been investigated by biochemical studies including chemical labeling and cross linking. Thirteen subunits(polypeptides) of the cytochrome-c-oxidase have localistic characteristics of existing in the matrix side or cytoplasmic side in the mitochondria. In order to observe the distribution of the enzyme subunit on the mitochondria membrane, immunogold-labeling methods were employed. Antibody was obtained from the serum of immunized rabbit with enzyme subunit antigen which was obtained from cytochrome-c-oxidase of the beef heart muscle mitochondria. Beef heart muscle tissue as a tissue antigen was stained with immunized rabbit IgG and protein A gold complex. Electron microscopy has identified the existance of cytochrome-c-oxidase subunit $Mt_I,\;Mt_{II}\;and\;Mt_{III}$ on the membrane of cristae and outer chamber of mitochondria and the subunit $C_{IV}$ on the membrane of cristae and matrix of mitochondria. Particularly, the subunit $C_{IV}$ was also observed to exist in the sarcoplasm of muscle tissue.

  • PDF

Effects of Extracellular $Ca^{++}$ on PKC or cAMP-stimulated Increases in LH Release and $LH{\beta}$ Subunit mRNA Levels in Rat Anterior Pituitary Cells (흰쥐 뇌하수체 전엽세포에서 PKC나 cAMP에 의한 LH 분비 및 $LH{\beta}$ Subunit mRNA 증가에 미치는 $Ca^{++}$의 영향)

  • Park, Deok-Bae;Kim, Chang-Mee;Cheon, Min-Seok;Ryu, Kyung-Za
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.347-355
    • /
    • 1996
  • We examined the effects of EGTA and verapamil on phorbol ester-and forskolin-stimulated LH releases and $LH{\beta}$ subunit mRNA levels in order to verify the role of extracellular $Ca^{++}$ on PKC- or cAMP-induced increases in LH release and $LH{\beta}$ subunit mRNA levels in cultured anterior pituitary cells of rat. Forskolin-stimulated $LH{\beta}$ subunit mRNA levels as well as LH release were all suppressed by prevention of $Ca^{++}$ mobilization from extracellular environment, after the treatment of EGTA as a $Ca^{++}$ chelator or verapamil as a $Ca^{++}$ channel blocker. PMA-stimulated $LH{\beta}$ subunit mRNA levels were also suppressed by the treatment of EGTA and verapamil, while PMA-induced LH release was not affected. From the present study, it is, therefore, suggested that PKC activation and cAMP elevation all stimulate $LH{\beta}$ subunit mRNA levels and these are extracellular $Ca^{++}$-dependent. However, LH releases by PKC activation and cAMP increase seem to be different each other. LH release by PKC activation is thought to be independent of extracellular $Ca^{++}$. On the other hand, cAMP stimulated-LH release is thought to be dependent on the entry of extracellular $Ca^{++}$.

  • PDF

Molecular Cloning of a cDNA Encoding a Ferritin Subunit from the Spider, Araneus ventricosus

  • Jin, Byung-Rea;Han, Ji-Hee;Kim, Seong-Ryul;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.2
    • /
    • pp.163-168
    • /
    • 2002
  • We report for the first time the cDNA sequence encoding a ferritin subunit from the spiders Araneus ventricosus. The complete cDNA sequence of A. ventricosus ferritin subunit comprised 516 bp with 172 amino acid residues. The A. ventricosus ferritin subunit cDNA contained a conserved iron responsive element sequence in the 5 untranslated region. An alignment of the deduced protein sequence of the A. ventricosus ferritin subunit gene to that of other heavy chain ferritin molecules showed that A. ventricosus ferritin subunit is most similar to the great pond snail, Lymnaea stagnalis, ferritin with 70.2% of protein sequence identity.

Molecular Cloning and Characterization of a cDNA for the PSI-H Subunit Homolog of Photosystem I in Chinese Cabbage (배추로부터 광계 I의 PSI-H Subunit Homolog의 클로닝 및 분자생물학적 특성 연구)

  • Cha, Joon-Yung;Choi, Young-Jin;Lee, Hyo-Shin;Kim, Ki-Yong;Park, Geun-Je;Jo, Jin-Ki;Son, Dae-Young
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 2002
  • PSI-H is an intrinsic membrane protein known to be essential for efficient electron flow in PSI complex. We isolated a cDNA clone encoding a PSI-H subunit homolog from Chinese cabbage (Brassica campestris L.). The cDNA, designated bpsaH, had an insert of 435 bp and a full open reading frame that would encode a protein of 145 amino acids. The amino acid sequence deduced from the cDNA sequence is 79.3% identical to that of spinach, suggesting the cDNA most likely encodes Chinese cabbage PSI-H subunit. The bpasH was expressed at high level in leaf tissue and low level in flower bud, whereas it was undetectable in root tissue.

Fed-batch Culture of Recombinant E.coli for the Production of Penicillin G Amidase (Penicillin G Amidase생산을 위한 재조합 대장균의 유가배양에 관한 연구)

  • Lee, Sang-Mahn
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.314-319
    • /
    • 2008
  • Penicillin G amidase (PGA, benzylpenicillinaminohydrolase, EC 3.5.1.11) is industrially important enzyme which converts penicillin G to 6-aminopenicillanic acid (6-APA) and phenylacetic acid (PAA). The PGA in E. coli ATCC 11105 is secreted into the periplasm after removing signal sequences and becomes heterodimer which composed of two subunits, small subunit (24 kDa) and large subunit (65 kDa). In this study, the PGA gene was obtained from E. coli ATCC 11105 using PCR (polymerase chain reaction) technique. The active PGA was successfully secreated into periplasm in E. coli BL2 1(DE3) harboring pET-pga plasmid. The optimized fed-batch fermentation, consisting of a three-step shift of culture temperature from $37^{\circ}C$ to $22^{\circ}C$, gave a productivity of 19.6 U/mL with a cell growth of 62 O.D. at 600 nm.

Molecular Cloning, Bioinformatics Analysis and Expression Profiling of a Gene Encoding Vacuolar-type $H^+-ATP$ Synthetase (V-ATPase) c Subunit from Bombyx mori

  • Lu, Peng;Chen, Keping;Yao, Qin;Yang, Hua-Jun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • As the genome of B.mori is available in GenBank and the EST database of B.mori is expanding, identification of novel genes of B.mori is conceivable by data-mining techniques. We used the in silico cloning method to get the vacuolar-type $H^+-ATP$ synthetase (V-ATPase) c subunit (16 kDa proteolipid subunit) gene of B.mori and analysed with bioinformatics tools. The result was confirmed by RT-PCR and sequencing. The V-ATPase c subunit cDNA contains a 468 bp ORF. The ORF encoded a 155-residue protein that showed extensive homology with V-ATPase c subunits from other 15 species and contained four membrane-spanning helices. Tissue expression pattern analysis revealed that V-ATPase c expressed strongly in Malpighian tubules, not in fat body. This gene has been registered in GenBank under the accession number EU082222.

Structural and Functional Relationship of the Catalytical Subunit of Recombinant Pyruvate Dehydrogenase Phosphatase (rPDPc): Limited Proteolysis (Pyruvate dehydrogenase phosphatase의 catalytical subunit의 구조와 활성에 대한 연구)

  • Kim, Young-Mi
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.1
    • /
    • pp.73-80
    • /
    • 2002
  • Pyruvate dehydrogenase phosphatase (PDP)와 kinase는 당대사시 해당과정에서의 대사 산물인 pyruvate를 acetyl CoA로 만들어 구연산 회로로 진입시켜 주는 효소인 pyruvate dehydrogenase complex (PDC)의 활성을 조절하는 중요한 효소이다. PDP의 catalytic subunit는 PDC의 dihydrolipoamide acetyltransferase (E2), PDP regulatory subunit (PDPr), 그리고 칼슘 결합 도메인 등으로 구성되어 있는 것으로 추측되어지고 있다. 본 연구에서는 그 구조와 기능과의 상관관계를 알아보기 위해 PDPc를 E. coli JM101에서 발현시켜 순수 정제 후 단백분해 효소를 이용한 제한적 가수분해 방법을 이용해 그 구조와 기능과의 상관관계에 대해 연구하고자 하였다 정제된 PDPc는 trypsin, chymotrypsin, Arg-C 그리고 elastase를 이용하여 3$0^{\circ}C$ 그리고 pH 7.0에서 제한적으로 분해시켰으며 각 분해산물의 아미노 말단의 아미노산 배열을 분석하였다. 그 결과 PDPc는 trypsin, chymotrypsin, elastase에 의해 N-terminal의 50 kD과 C-terminal의 10 kD의 두개의 분해산물을 만들었으며, Arg-C에 의해 50kD의 분해산물은 약 35kD와 15kD으로 더 가수분해가 되었다. 이러한 결과로 볼 때 PDPc는 앞에서 추측한데로 세개의 주요한 기능적 도메인으로 이루어져 있음을 알 수 있었다 또한 C-terminal의 10kD은 PDPc의 활성에는 영향을 주지 않는 것으로 밝혀졌으나 다른 도메인의 기능은 더 연구가 되어져야 할 것으로 생각된다.

Characterization of Segments of $G{\alpha}_{16}$ Subunit Required for Efficient Coupling with Chemoattractant C5a, IL-8, and fMLP Receptors

  • Eia, Ji-Hee;Lee, Chul-Hoon;Lee, Chang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1031-1037
    • /
    • 2004
  • The interaction of chemoattractant receptors and $G{\alpha}_{16}$ was studied to provide the molecular basis to elucidate the interaction of chemoattractant receptors with $G{\alpha}_{16}$ subunit, thereby possibly contributing to finding novel targets for designing new type of G protein antagonists with anti-inflammatory effects. Experiments were performed to characterize the $G{\alpha}_{16}$ subunit domains responsible for efficient coupling to chemoattractant receptors. Thus, a series of chimeric $G{\alpha}_{11}G{\alpha}_{16}$ and $G{\alpha}_{16}G{\alpha}_{11}$ cDNA constructs were expressed, and the ability of chimeric proteins to mediate C5a, IL-8, and fMLP-induced release of inositol phosphate in transfected Cos-7 cells was tested. The results showed that short stretches of residues 154 to residue 167 and from residue 174 to residue 195 of $G{\alpha}_{16}$ contribute to efficient coupling to the C5a receptor. On the other hand, a stretch of amino acid residues 220-240 of $G{\alpha}_{16}$ that is necessary for interacting with C5a receptor did not play any role in the interaction with IL-8 receptor. However, a stretch from residue 155 to residue 195 of $G{\alpha}_{16}$ was found to be crucial for efficient coupling to IL-8 receptor in concert with C-terminal 30 amino acid residues of this ${\alpha}$ subunit. Coupling profiles of a variety of chimeras, composed of $G{\alpha}_{11}G{\alpha}_{16}$ to fMLP receptor indicate that the C-terminal 30 amino acids are most critical for the coupling of $G{\alpha}_{16}$ to fMLP receptor. Taken together, $G{\alpha}_{16}$ subunit recruits multiple and distinctive coupling regions, depending on the type of receptors, to interact.

Structural and Functional relationship of the recombinant catalytic subunit of pyruvate dehydrogenase phosphatase

  • Kim, Young-Mi;Jung, Ki-Hwa
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.215-215
    • /
    • 2002
  • Catalytic subunit of pyruvate dehydrogenase phosphatase (PDPc) has been suggested to have three major funational domains such as dihydrplipoamide adetyltransferase(E2)-binding domain, regulatory subunit of PDP(PDP)r-binding domain, and calcium-binding domain. In order to identify functional domains, recombinant catalytic subunit of pyruvate dehydrogenase phosphatase(rPDPc) was expressed in E. coli JM101 and purified to near homogeneity using the unique property of PDPc: PDPc binds to the inner lipoyl domain (L2) of E2 of ppyruvate dehydrogenase complex (PDC) in the presence of Ca+2, not under EGTA. PDPc was limited-proteolysed by typsin, chymotypsin, Arg-C, and elastase at pH 7.0 and 30C and N-terminal analysis of the fragments was done. Chymotrypsin, trypsin, and elastase made two major fragments: N-terminal large fragment, approx. 50kD and C-terminal small fragment, approx.10 kDa. Arg-C made three major fragments: N-terminal fragment, approx. 35kD, and central fragment, approx. 15 kD, and C-terminal fragment, approx. 10 kD. This study strongly suggest that PDPc consists of three major functional domains. However, further study should be necessary to identify the functional role.

  • PDF

Molecular Cloning of the Sec61p ${\gamma}$ Subunit Homologue Gene from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Jin, Byung-Rae;Kim, Eun-Sun;Lee, Heui-Sam;Ahn, Mi-Young;Sohn, Hung-Dae;Ryu, Kang-Sun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.73-77
    • /
    • 2002
  • The Sec61 trimeric complex ($\alpha$,$\beta$, and ${\gamma}$ subunits) is one of the Sec-complex responsible for post-translational protein translocation across the endoplasmic reticulum membrane in diverse organisms. In this study, a cDNA encoding the Sec61p ${\gamma}$ subunit homologue was isolated from the cDNA library of the mole cricket, Gryllotalpa orientalis. Sequence analysis of a 442-bp cDNA clone showed it to contain an open reading frame of 68 amino acid residues consisted of 204-bp. The homologues of the gene were found in the GenBank database in a diverse organism including insect, mammals, fungi, and plants. The deduced amino acid sequence of Sec61p ${\gamma}$ subunit homologue of the mole cricket showed the highest homology to the gene of the singly known insect, Drosophila melanogester (93% identity), and the least homology to that of the baker's yeast, Saccharomyces cerevisiae (37.2%). Phylogenetic analysis also confirmed a close relationship between the insect Sec61p ${\gamma}$ subunit homologues of G. orientalis and D. melanogester. Hydropathy analysis of the cricket mole and published other data suggested that the hydrophobic segment close to C-terminus is predicted to be the putative membrane anchor, Multiple alignment of the Sec61p ${\gamma}$ subunit homologue among several organisms showed the presence of several conserved domains including the conserved proline at position 28.