Browse > Article

Characterization of Segments of $G{\alpha}_{16}$ Subunit Required for Efficient Coupling with Chemoattractant C5a, IL-8, and fMLP Receptors  

Eia, Ji-Hee (Department of Cancer Research and Molecular Biology, Fels Institute, Temple University)
Lee, Chul-Hoon (Department of Medical Genetics, College of Medicine, Hanyang University)
Lee, Chang-Ho (Department of Pharmacology and Institute of Biomedical Sciences, College of Medicine, Hanyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.5, 2004 , pp. 1031-1037 More about this Journal
Abstract
The interaction of chemoattractant receptors and $G{\alpha}_{16}$ was studied to provide the molecular basis to elucidate the interaction of chemoattractant receptors with $G{\alpha}_{16}$ subunit, thereby possibly contributing to finding novel targets for designing new type of G protein antagonists with anti-inflammatory effects. Experiments were performed to characterize the $G{\alpha}_{16}$ subunit domains responsible for efficient coupling to chemoattractant receptors. Thus, a series of chimeric $G{\alpha}_{11}G{\alpha}_{16}$ and $G{\alpha}_{16}G{\alpha}_{11}$ cDNA constructs were expressed, and the ability of chimeric proteins to mediate C5a, IL-8, and fMLP-induced release of inositol phosphate in transfected Cos-7 cells was tested. The results showed that short stretches of residues 154 to residue 167 and from residue 174 to residue 195 of $G{\alpha}_{16}$ contribute to efficient coupling to the C5a receptor. On the other hand, a stretch of amino acid residues 220-240 of $G{\alpha}_{16}$ that is necessary for interacting with C5a receptor did not play any role in the interaction with IL-8 receptor. However, a stretch from residue 155 to residue 195 of $G{\alpha}_{16}$ was found to be crucial for efficient coupling to IL-8 receptor in concert with C-terminal 30 amino acid residues of this ${\alpha}$ subunit. Coupling profiles of a variety of chimeras, composed of $G{\alpha}_{11}G{\alpha}_{16}$ to fMLP receptor indicate that the C-terminal 30 amino acids are most critical for the coupling of $G{\alpha}_{16}$ to fMLP receptor. Taken together, $G{\alpha}_{16}$ subunit recruits multiple and distinctive coupling regions, depending on the type of receptors, to interact.
Keywords
$G{\alpha}_{16}$; chemoattractant receptor; IL-8; fMLP; G-protein antagonist;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Beckmann, M. P., W. E. Munger, C. Kozlosky, T. VandenBos, V. Price, S. Lyman, N. P. Gerard, C. Gerard, and D. P. Cerretti. 1991. Molecular characterization of the interleukin-8 receptor. Biochem. Biophys. Res. Commun. 179: 784-789.
2 Buhl, AM., B. J. Eisfelder, G. S. Worthen, G. L. Johnson, and M. Russell. 1993. Selective coupling of the human anaphylatoxin C5a receptor and G alpha 16 in human kidney 293 cells. FEBS. Lett. 323: 132- 134.
3 Chang, M., L. Zhang, J. P. Tam, and E. Sanders-Bush. 2000. Dissecting G protein-coupled receptor signaling pathways with membrane-permeable blocking peptides. Endogenous 5-HT(2C) receptors in choroid plexus epithelial cells. J. BioI. Chem. 275: 7021-7029.
4 Freissmuth, M., M. Waldhoer, E. Bofill-Cardona, and C. Nanoff. 1999. G protein antagonist. Trends Pharmacol. Sci. 20: 237- 245.
5 Gilchrist, A., J. F. Vanhauwe, A. Li, T. O. Thomas, T. Voyno-Yasenetskaya, and H. E. Hamm. 2001. G alpha minigenes expressing C-terminal peptides serve as specific inhibitors of thrombin-mediated endothelial activation. J. BioI. Chem. 276: 25672- 25679.
6 Gilchrist, A., M. R. Mazzoni, B. Dineen, A Dice, J. Linden, W. R. Proctor, C. R. Lupica, T. V. Dunwiddie, and H. E. Hamm. 1998. Antagonists of the receptor-G protein interface block Gi-coupled signal transduction. J. Biol. Chem. 273: 14912- 14919.
7 Hepler, J. R and A G. Gilman. 1992. G proteins. Trends Biochem. Sci. 17: 383- 387.
8 Horton, R. M., H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease. 1989. Engineering hybrid genes without the use of restriction enzymes: Gene splicing by overlap extension. Gene 77: 61-68.
9 Lee, C. H., A. Katz, and M. I.Simon. 1995. Multiple regions of G alpha 16 contribute to the specificity of activation by the C5a receptor. Mol. Pharmacal. 47: 218- 223.
10 Offermanns, S. and M. I. Simon. 1995. G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J. BioI. Chem.270: 15175-15180.
11 Wu, D., G. J. LaRosa, and M. I. Simon. 1993. G proteincoupled signal transduction pathways for interleukin-S, Science 261: 101- 103.
12 Masters, S. B., K. A. Sullivan, R. T. Miller, B. Beiderman, N. G. Lopez, J. Ramachandran, and H. R. Bourne. 1988. Carboxyl terminal domain of Gs alpha specifies coupling of receptors to stimulation of adenylyl cyclase. Science 241: 448-451.
13 Rossi, D. and A. Zlotnik. 2000. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18: 217-242.
14 Dratz, E. A., J. E. Furstenau, C. G. Lambert, D. L. Thireault, H. Rarick, T. Schepers, S. Pakhlevaniants, and H. E. Hamm. 1993. NMR structure of a receptor-bound G-protein peptide. Nature 363: 276- 281.
15 Prossnitz, E. R. and R. D. Yeo 1997. The N-formy1 peptide receptor: A model for the study of chemoattractant receptor structure and function. Pharmacal. Ther. 74: 73- 102.
16 Amatruda, 3rd T. T., S. Dragas-Graonic, R. Holmes, and H. D. Perez. 1995. Signal transduction by the formy1 peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with Gproteins. J. BioI. Chem. 270: 28010- 28013.
17 Markby, D. W., R. Onrust, and H. R. Bourne. 1993. Separate GTP binding and GTPase activating domains of a G alpha subunit. Science 262: 1895- 901.
18 Cabrera-Vera, T. M., J. Vanhauwe, T. O. Thomas, M. Medkova, A Preininger, M. R. Mazzoni, and H. E. Hamm. 2003. Insights into G protein structure, function, and regulation. Endocr. Rev. 24: 765- 781.   DOI   ScienceOn
19 Holmes, W. E., J. K. Lee, W. J. Kuang, G. C. Rice, and W. I. Wood. 1991. Structure and functional expression of a human interleukin-8 receptor. Science 253: 1278-1280.
20 Amatruda, 3rd T. T., D. A Steele, V. Z. Slepak, and M. I. Simon. 1991. $G{\alpha}_{16}$, a G protein $\alpha$. subunit specifically expressed in hematopoietic cells. Proc. Natl. Acad. Sci. USA 88: 5587- 5591.   DOI   ScienceOn
21 Wu, D., A. Katz, and M. I. Simon. 1993. Activation of phospholipase C beta 2 by the alpha and beta gamma subunits of trimeric GTP-binding protein. Proc. Natl. Acad. Sci. USA 90: 5297-5301.
22 Conklin, B. R., Z. Frafel, K. D. Lustig, Julius, and H. R.Bourne. 1993. Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature 363: 274-276.
23 Liu, W. and J. K. Northup. 1998. The helical domain of a G protein alpha subunit is a regulator of its effector. Proc. Natl. Acad. Sci. USA 95: 12878- 12883.
24 Amatruda, 3rd T. T., N. P Gerard, C. Gerard, and M. I.Simon. 1993. Specific interactions of chemoattractant factor receptors with G-proteins. J. BioI. Chem. 268: 10139-10144.
25 Ha, J. H., N. Dhanasekaran, H. C. Koh, and C. H. Lee. 2000. Single amino acid of $G{\alpha}_{16}$ $(Ala^{228})$ is responsible for the ability of chemoattractant C5a receptor to induce $G{\alpha}_{16}$mediated inositol phosphate release. Biochem. Biophys. Res. Commun. 278: 426-431.
26 Wilkie, T. M., D. J. Gilbert, A. S. Olsen, X. N. Chen, T. T. Amatruda, J. R. Korenberg, B. J. Trask, P. de Jong, R. R. Reed, and M. I. Simon. 1992. Evolution of the mammalian G protein alpha subunit multigene family. Nat. Genet. 1: 85-91.   DOI   ScienceOn
27 Mazzoni, M. R., J. A. Malinski, and H. E. Hamm. 1991. Structural analysis of rod GTP-binding protein, Gt. Limited proteolytic digestion pattern of Gt with four proteases defines monoclonal antibody epitope. J. Biol. Chem. 25: 14072- 14081.
28 Murphy, P. M. and H. L. Tiffany. 1991. Cloning of complementary DNA encoding a functional human interleukin8 receptor. Science 253: 1280- 1283.
29 Sullivan, K. A., R. T. Miller, S. B. Masters, B. Beiderman, W. Heideman, and H. R. Bourne. 1987. Identification of receptor contact site involved in receptor-G protein coupling. Nature 330: 758- 760.
30 Krieger-Brauer, H. I., P. K. Medda, U. Hebling, and H. Kather. 1999. An antibody directed against residues 100-119 within the alpha-helical domain of Galpha(s) defines a novel contact site for beta-adrenergic receptors. J. Biol. Chem. 274: 28308- 28313.   DOI
31 Kosteinis, E., M. Y. Degtyarev, B. R. Conklin, and J. Wess. 1997. The N-terminal extension of Galpha q is critical for constraining the selectivity of receptor coupling. J. Biol. Chem. 272: 19107-19110.
32 Hamm, H. E., D. Deretic, A Arendt, T. A Hargrave, B. Koenig, and K. P. Hofmann. 1988. Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science 241: 832- 835.
33 Le, Y., B. Li, W. Gong, W. Shen, J. Hu, N. M. Dunlop, Oppenheim, and J. M. Wang. 2000. Novel pathophysiological role of classical chemotactic peptide receptors and their communications with chemokine receptors. Immunol. Rev. 177: 185- 194.