• Title/Summary/Keyword: Substructuring reduction method

Search Result 17, Processing Time 0.022 seconds

Dynamic Characteristics Identification of Cylindrical Structure Using Dynamic Substructuring Method (Dynamic Substructuring 기법을 이용한 원통형 구조물의 동특성 확인)

  • Choi, Youngin;Park, No-Cheol;Lee, Sang-Jeong;Park, Young-Pil;Kim, Jinsung;Park, Chanil;Roh, Woo-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.106-109
    • /
    • 2014
  • In order to obtain dynamic behaviors of complex structures, it demands large amounts computational cost and time to perform the numerical analysis. The model reduction method helps these problems by dividing the full model into primary and unnecessary parts. In this research, we perform the modal analysis using the dynamic substructuring method, which is one of the model reduction methods, in order to obtain the dynamic characteristics of the cylindrical structures efficiently. To select the master degrees of freedom (dofs), we consider the mode shapes of the cylindrical structures. And then, we identify the validity of the dynamic substructuring method by applying the method to the simple cylinder and core support barrel (CSB) which is one of the reactor internals with the cylindrical shape. The results demonstrate that the dynamic characteristics from the dynamic substructuring method are well matched with the original method.

  • PDF

Efficient Dynamic Response Analysis Using Substructuring Reduction Method for Discrete Linear System with Proportional and Nonproportional Damping

  • Choi, Dong-Soo;Cho, Maeng-Hyo;Kim, Hyun-Gi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.85-99
    • /
    • 2008
  • The dynamic response analysis for large structures using finite element method requires a large amount of computational resources. This paper presents an efficient vibration analysis procedure by combining node-based substructuring reduction method with a response analysis scheme for structures with undamped, proportional or nonproportional damping. The iterative form of substructuring reduction scheme is derived to reduce the full eigenproblem and to calculate the dynamic responses. In calculating the time response, direct integration scheme is used because it can be applied directly to the reduced model. Especially for the non proportional damping matrix, the transformation matrices defined in the displacement space are used to reduce the system. The efficiency and the effectiveness of the present method are demonstrated through the numerical examples.

Finite Element Stress Analysis of Coil Springs using a Multi-level Substructuring Method II : Validation and Analysis (다단계 부분구조법을 이용한 코일스프링의 유한요소 응력해석 II : 검증 및 해석)

  • Kim, Jin-Young;Huh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.151-162
    • /
    • 2000
  • This study is concerned with computerized multi-level substructuring methods and stress analysis of coil springs. The purpose of substructuring methods is to reduce computing time and capacity of computer memory by multiple level reduction of the degrees of freedom in large size problems that are modeled by three dimensional continuum finite elements. In this paper, the spring super element developed is investigated with tension, torsion, and bending of a cylindrical bar in order to verify its accuracy and efficiency for the multi-level substructuring method. And then the algorithm is applied to finite element analysis of coil springs. The result demonstrates the validity of the multi-level substructuring method and the efficiency in computing time and memory by providing good computational results in coil spring analysis.

  • PDF

NUMERICAL SOLUTION OF EQUILIBRIUM EQUATIONS

  • Jang, Ho-Jong
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.133-142
    • /
    • 2000
  • We consider some numerical solution methods for equilibrium equations Af + E$^{T}$ λ = r, Ef = s. Algebraic problems of this form evolve from many applications such as structural optimization, fluid flow, and circuits. An important approach, called the force method, to the solution to such problems involves dimension reduction nullspace computation for E. The purpose of this paper is to investigate the substructuring method for the solution step of the force method in the context of the incompressible fluid flow. We also suggests some iterative methods based upon substructuring scheme..

  • PDF

Finite Element Stress Analysis of Coil Springs using a Multi-level Substructuring Method I : Spring Super Element (다단계 부분구조법을 이용한 코일스프링의 유한 요소 응력해석 I : 스프링 슈퍼요소)

  • Kim, Jin-Young;Huh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.138-150
    • /
    • 2000
  • This study is concerned with computerized multi-level substructuring methods and stress analysis of coil springs. The purpose of substructuring methods is to reduce computing time and capacity of computer memory by multiple level reduction of the degrees of freedom in large size problems which are modeled by three dimensional continuum finite elements. In this paper, a super element has been developed for stress analysis of coil springs. The spring super element developed has been examined with tension and torsion simulation of cylindrical bars for demonstrating its validity. The result shows that the super element enhances the computing efficiency while it does not affect the accuracy of the results and it is ready for application to the coil spring analysis.

  • PDF

Model Order Reduction for Mid-Frequency Response Analysis (중주파수 응답해석을 위한 축소 기법)

  • Ko, Jin-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.135-138
    • /
    • 2009
  • Most of the studies use model order reduction for low frequency (LF) response analysis due to their high computational efficiency. In LF response analysis, one of model order reduction, algebraic substructuring (AS) retains all LF modes when using the modal superposition. However, in mid-frequency (MF) response analysis, the LF modes make very little contribution and also increase the number of retained modes, which leads to loss of computational efficiency. Therefore, MF response analysis should consider low truncated modes to improve the computational efficiency. The current work is focused on improving the computational efficiency using a AS and a frequency sweep algorithm. Finite element simulation for a MEMS resonator array showed that the performance of the presented method is superior to a conventional method.

  • PDF

Automated static condensation method for local analysis of large finite element models

  • Boo, Seung-Hwan;Oh, Min-Han
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.807-816
    • /
    • 2017
  • In this paper, we introduce an efficient new model reduction method, named the automated static condensation method, which is developed for the local analysis of large finite element models. The algebraic multilevel substructuring procedure is modified appropriately, and then applied to the original static condensation method. The retained substructure, which is the local finite element model to be analyzed, is defined, and then the remaining part of the global model is automatically partitioned into many omitted substructures in an algebraic perspective. For an efficient condensation procedure, a substructural tree diagram and substructural sets are established. Using these, the omitted substructures are sequentially condensed into the retained substructure to construct the reduced model. Using several large practical engineering problems, the performance of the proposed method is demonstrated in terms of its solution accuracy and computational efficiency, compared to the original static condensation method and the superelement technique.

Structural modal reanalysis using automated matrix permutation and substructuring

  • Boo, Seung-Hwan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.105-120
    • /
    • 2019
  • In this paper, a new efficient method for structural modal reanalysis is proposed, which can handle large finite element (FE) models requiring frequent design modifications. The global FE model is divided into a residual part not to be modified and a target part to be modified. Then, an automated matrix permutation and substructuring algorithm is applied to these parts independently. The reduced model for the residual part is calculated and saved in the initial analysis, and the target part is reduced repeatedly, whenever design modifications occur. Then, the reduced model for the target part is assembled with that of the residual part already saved; thus, the final reduced model corresponding to the new design is obtained easily and rapidly. Here, the formulation of the proposed method is derived in detail, and its computational efficiency and reanalysis ability are demonstrated through several engineering problems, including a topological modification.

A Study On Vehicle Interior Noise Reduction Applying FRF Based Substructuring (주파수 응답함수 합성법을 이용한 차량 실내 소음 저감에 관한 연구)

  • Oh, Sang-Hoon;Kang, Yeon-June;Sun, Jong-Cheon;Song, Moon-Sung;Kim, Seong-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.122-125
    • /
    • 2006
  • The Substructure Synthesis means the technology to predict the dynamic properties of an assembly from the properties of its components, or to predict the effect of a modification on a structure. The FRF Based Substructuring method is a kind of the Substructure Synthesis and very useful to predict the efficiency of the product in the early stage of development. Especially, the Hybrid FBS method is very useful to predict the vehicle NVH characteristics after modifying some components of the vehicle. Target components can be established on the basis of test models and FE models of the prototype constructed in the early stage of development. In this study, the Hybrid FBS method was applied to vehicle subframe and car-body in order to reduce vehicle interior noise induced by engine exciting force.

  • PDF

An efficient modeling technique for floor vibration in multi-story buildings

  • Lee, Dong-Guen;Ahn, Sang-Kyoung;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.603-619
    • /
    • 2000
  • Analysis of a framed structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic responses. This paper presents an efficient modeling technique for vertical vibration utilizing substructuring technique and super elements. To simplify the modeling procedure each floor in a structure is modeled as a substructure. Only the vertical translational degrees of freedom are selected as master degrees of freedom in the inside of each substructure. At the substructure-column interface, horizontal and rotational degrees of freedom are also included considering the compatibility condition of slabs and columns. For further simplification, the repeated parts in a substructure are modeled as super elements, which reduces computation time required for the construction of system matrices in a substructure. Finally, the Guyan reduction technique is applied to enhance the efficiency of dynamic analysis. In numerical examples, the efficiency and accuracy of the proposed method are demonstrated by comparing the response time histories and the analysis time.