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NUMERICAL SOLUTION OF
EQUILIBRIUM EQUATIONS

Ho-JonNG JANG

ABSTRACT. We consider some numerical solution methods for equi-
librium equations Af + ETA = r, Ef = s. Algebraic problems of
this form evolve from many applications such as structural optimiza-
tion, fluid flow, and circuits. An important approach, called the force
method, to the solution to such problems involves dimension reduction
nullspace computation for E. The purpose of this paper is to inves-
tigate the substructuring method for the solution step of the force
method in the context of the incompressible fluid flow. We also sug-
gests some iterative methods based upon substructuring scheme.

1. Introduction

Equations of equilibrium arise in numerous areas of science and en-
gineering. Applications to structures, fluid flow, electric networks, and
signal processing are elegantly described in Strang [8]. An equilibrium
matrix (or incidence matrix) is an 7 x n matrix E generally associated
with a finite difference or finite element grid, a graph or a network. When
the problem is modeled using domain decomposition or substructuring
techniques, F is highly structured.

The context in which equilibrium matrices arise may be stated as the
quadratic programming problem: minimize fZAf —2f7r subject to Ef =
s, and first-order necessary conditions for a solution to this problem are
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given by the system of linear equations

o EEIHLE)

where A is a vector of Lagrange multiplier.

The fluid flow problems are formulated in terms of the Navier-Stokes
equations, and when appropriately discretized, give rise to the Lagrange
multipliers problem(1) (see [3]). The vector f represents velocity, while
A is pressure. The equilibrium matrix F is a discrete divergence opera-
tor, while A is the n x n discretization of convective and diffusion effects.
A has block tri-diagonal structure, but is generally not symmetric. The
equations Ff = s and Af +ET ) = r reflect conservation of mass and con-
servation of momentum, respectively; the vector r and s capture boundary
and forcing terms.

In the force method (or dual variable method), the vector f is computed
in three phases:

i) Solve Ef, = s, f, is any particular solution to Ef = s,

and find a nullspace N of E.
ii) Let the columns of N be the null basis of E, and solve

(2) NTANfy = —=NT(r — Af,).

iii) Set f = f, + Nfo, and solve ETEX = —EAf.

The force method is a dimension reduction scheme based upon com-
putation of a basis for the nullspace for E. Nullspace computation of the
force method has an important role in the entire force method computa-
tion.

In our approach to compute the nullspace we use a parallel scheme by
utilizing the graph theoretic ideas in what we call the substructuring
method, which is introduced by Plemmons and White[7]. This method
successfully handles parallel nullspace computation, and several imple-
mentation details are reported in [4]. Here we continue the study of the
substructuring method for the solution step of the force method, which is
system (2).

With discussion about the solvability of system (2), development of
a iterative scheme based on the substructuring method and comparison
with some other methods in terms of numerical efficiency and parallel
computation aspects are our main purposes of this paper.
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2. Substructuring method

In general, there exists a product of elementary matrices, P, such that
PE = [Ey, E,) = E\[I,,, B ' E),

where E; is nonsingular. Consequently, the nullspace of PE, and hence
FE, is generated by the columns of the block matrix

_ | EF'E,
)

Methods of finding a sparse or structural basis of the nullspace of the
equilibriumn matrix have been the subjects of extensive study over the
past few years. With special interest in parallel computation, motivation
for developing the substructuring method was that the nullspace com-
putation(forming N) can often be done by appropriate ordering of the
nodes and elements, extending certain results in [2]. This ordering yields
a matrix F/ with a great deal of structure which can be exploited by mul-
tiprocessing computers in forming N.

We consider an application of the substructuring method, the proper
partition of the finite difference grid, to the incompressible Navier-Stokes
equations. The matrix A will change a little from one time step to next.
With an appropriate ordering cf the nodes and elements, a matrix E,
which reflects the conservation of mass equation, has a block angular form
in the most of the fluid flow case [7]. The resulting nullspace basis matrix
N normally has the form:

[ nn
N1 TNagg

T32
Ney1e

-1

where n;; is upper triangular matrix which has components are 1 for ¢ = j,
and are —1 for i # j. Here, dim(n;;) is the number of elements for
each structure, and ¢ is the number of sets in the partition of the nodes.
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More details of the nullspace computation based upon the substructuring
method are in [7].

3. System (2) with substructuring method

In this section we discuss the solvability of (2) and consider iterative
methods in parallel and substructuring aspects.

3.1. Solvability of system (2)

The following results from Amit et al. [1] and Hall [3] do establish
sufficient conditions for the nonsingularity of NTAN.

THEOREM 3.1. If YTAY # 0 for all non-zero Y in the range R(N)
of the matrix N, then NT AN is nonsingular.

THEOREM 3.2. If
(i) A has positive diagonal elements,
(ii) A is both row and column diagonally dominant, and A is strictly
diagonally dominant in the either rows or columns, and
(iii) N has full row rank,
then NT AN is nonsingular.

In fact, in the incompressible fluid flow with uniform mesh spacing case,
the diagonal dominance of A is a natural condition. The difficult hypoth-
esis to satisfy is the diagonal dominance of A”. One way to guarantee this
is to restrict the time step. From the properties of A in incompressible
fluid flow case, we established more results in [5].

The next results show that the block banded shape of NT AN based on
the substructuring method.

THEOREM 3.3. Let N be the nullspace of the incidence matrix, which
has the form in (3). Then the matrix P = NTAN has the following
properties:

. A, 0O N

(i) Suppose A = [ 0 A } and N = [ _7 ] Then P can be expressed
y

as N{f A;Ny + Ay, where A;, A,: discretization of momentum equation for

z, y direction, respectively.

(ii) P is block-pentadiagonal.

(iii) The size of each block of P depends on the number of elements in

each partition of substructures.
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ProOF. (i)

A, 0 ][N
P=[N1T,—I][ 0 AyH_}]=N}‘Ale+Ay.

(it) Suppose N has the form as in (3). Then

- . r -
nd} (@nnu + a1anar) n71012M22 nliazsnas
T T
+nd (ann + apna) 403, (anng + asns)
n{z ((1217111 + a22n21) . . . O
T T
NTA,N, = +nfazna
n{3032n21

0 |

Note that dim(n;;)=dim(a;;), and each a;; is a triangular matrix with
positive diagonal entries and off-diagonal entries are negative, and a;; is
diagonal matrix with negative entries if ¢ # j. Since A, is block tridiagonal
matrix, P = Nf A,N; + A, is a block pentadiagonal matrix.

(iii) By (ii), it is obvious. 0

3.2. Iterative methods

Recall that NTAN is not an M-matrix and is also nonsymmetric. Al-
though any iterative method can be formally applied to this nonsymmetric
problem, in most cases there is no guarantee that the iterative method will
converge. Many iterative methods were proposed and discussed in [6] to
solve (2). In addition to these, we proposed a iterative method which
can take advantage of using the substructuring method. We now pick the
best among the other iterative methods which were suggested in [6] and
consider its parallel and substructuring aspects.

Induced Jacobi method (IJ). This method [6] comes from splitting
the matrix A into A; — A; — A, and then gets the product form:

NTAN = NT(Ay— A — AN,
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where A; is a diagonal matrix which has only diagonal part of A and
A+ A, = A;— A. Now, just as with the standard Jacobi method, we get

(4) : NTAde(;€+1 = NT(AI + Jqu)]\/vf(;c + b7
and ot = Myf§+ (NTAN),

where b = —NT(r — Af,), My = (NTA.N)"(NT(A + A,)N). Since Ay is
a diagonal matrix with positive components, which satisfies the hypothesis
of the Theorem 3.2, NTA;N is invertible.

Block Induced Jacobi method (BIJ). Recall that A is block tridi-
agonal matrix and N also has block structure based on the substructuring
method. By using these facts, this iterative method can be obtained in
the same way as the induced Jacobi method except we take Ap for the
splitting matrix. We have

(5) NTApN f&1 = NT(Ap+ Ay)NfE+b,
and  fE1 = Mpff+ (NTApN)™'b,

where Mp = (NTApN)"Y(NT(AL+ Ay)N), Ap is a block diagonal matrix
with components from only block diagonal part of A and A + Ay =
Ap — A. Here, Ap also satisfies the hypothesis of the Theorem 3.2, and
NTApN is invertible.

It is difficult to say that (4) and (5) are always convergent without any
restriction because properties of the matrix A depend on time step, mesh
lengths and density etc. One way to prove that (4) and (5) are convergent
is to find suitable conditions under which the modulus of the eigenvalues
of M; and Mp are less than one. We will need the following definition.

DEFINITION. A square matrix, F is
Hermitian Positive Definite (HPD) iff Re(zT(F + FT)z) > 0 for all z # 0
and F is Hermitian,
Complez Positive Definite (CPD) iff Re(z® (F + FT)x) > 0 for all z # 0
and F is Complex.

LEMMA 3.4. If F is a Hermitian n X n strictly diagonally dominant or
irreducibly diagonally dominant matrix with positive real diagonal entries,
then F is HPD.

PROOF. See Varga (9] 0O
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LEMMA 3.5. If A is CPD and N has full column rank, then NTAN is
also CPD and hence nonsingular.

PROOF. Let z € C"™/{0} and define z = Nz. Then z # 0, because N
has full column rank. So Re(z(NTAN+(NTAN)T)z) = Re(z(NT AN+
(NTATN)z) = Re(z¥ NT(A+AT)Nz) = Re(2¥ (A+AT)z2) > 0, because A
is CPD. And since Re(z¥(NTAN)z) = Re(3z" (NTAN + (NTAN)T)z) >
0, NTAN is nonsingular. O

THEOREM 3.6. If A and AT are diagonally dominant and either A or
AT s strictly diagonally dominant, then (4) and (5) are convergent.

PROOF. We only show that the convergence of BLJ, (5). The proof of
the convergence of 1J is in [6]. Let A be an eigenvalue of Mp in (5), and
let = be an eigenvector associated with A\. Then

Mpz =Xz = (NTApN) Y NT(AL+ Ay)N]z = Az
5l

(6) = 3 NT(AL + Ay)N)z = NTApNz

= [NT(i)(AL + Ay)N]z = NTApNz

1

= NT[AD - X

Define the matrix-valued function C'(A\) = Ap — %(AL + Ay). Let |A| > 1.

Without loss of generality, assume A is strict row diagonally dominant.
Then, we have

larel > D lakl = lagparl + lareoal + Y ]
Tk ALk k1

= el = llarpa| +lareall > D0 ),
k-1 k41

(AL + AU)]N:E = (.

where a;; is component of A. Since off-diagonal entries of A are negative,
|akk—1] + |ag k41| is the same as {agx—1 + axx+1], and

lakk — (@rps1 + Gkp—1)] > laek] — |akxs1 + G g-1]-

Hence,

1
|akk — (akpir + arp-1)| > Z la;| > Z |a].

Jtk—1kk+1 A GAk—1k,k+1
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Note that above inequality also holds for the case that either a1 or
ay k-1 is zero. By using the diagonal dominance of AT and from the same
argument as above, we have

1
lae — (@rsrp + ak-14)| = E— Z |ajie]-
| jEk=1kk+1

Adding two previous inequalities, we obtain

[2akk — (@kp+1 + Qp—1 + Gk + Gk-1,1)]

1 1 Q; a;
> nl Z lags] + I_X-| Z lajx| = E (l%, + I%D
FAk—1kk+1 k=1 k+1 JEk-1kk+1
> > P+
j#k—1kk+1
Since Ap is block diagonal and each block has 3 non-zero diagonals which
are agk, Grt1s, and ax_ g, the matrix C(\) + C(M)¥ is strictly diagonally
dominant, Hermitian and has positive diagonal entries. Hence, it is HPD
by Lemma 3.4, and C()) is CPD and therefore invertible. Now from
Lemma 3.5, N'C(\)N is CPD and thus invertible also. That means that
if [A] > 1, then there can be no non-zero vector, z, such that N'C(A\)Nz =
0, which contradicts (6). This contradiction implies that |A| < 1, and BIJ
is convergent. O

Restrictions on mesh-spacing and time-step are the requirements for
the diagonally dominance of A and AT. We need to require the condition
about time-step for the diagonally dominance of A7, because A is strictly
diagonally dominant when mesh-spacing are constant in the incompress-
ible fluid flow case. More results related to restrictions on time-step and
the inner computation of (2) are discussed in [5].

4. Numerical experiments

We consider the implementation of the BIJ and discuss some numerical
results comparing the performance of IJ and BIJ. The problem chosen
was the 2D driven cavity problem that is well known as a standard test
problem in fluid mechanics. The fluid contained in a square cavity is
subjected to a uniform velocity imposed upon the top surface. We set the
viscosity ©=0.025, which is equivalent to the case of a Reynolds’ number
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of 400. The region was overlaid with 8 x 8 grids of uniform mesh which
means the dimension of A matrix is 136 x 136. Uniform time step of |
second was chosen and the inner and outer convergence tolerance was set
at 107%. Calculations were done on an Alliant FX/40 with two vector
CPU’s.

We display in Tablz 1 the comparison of BIJ and 1J for outer loop, and
inner computations were done by either block SOR or point SOR. From
Table 1 we see that BIJ for the outer loop and the block SOR for the inner
loop was best among those tested. According to Table 2, we get the best
speedup when we use 1J for outer loop and point SOR for inner loop in
parallel computation.

TABLE 1. The matrix A of order n=136; Inner Optimal w= 1.84

Outer BIJ
Inner block SOR point SOR
Time step 1 2 3 4 1 2 3 4
Outer iter. 25 20 27 18 25 22 18 18
CPU Time(sec.) || 1.325 | 1.309 | 0.891 | 0.674 | 2.345 | 2.711 | 1.510 | 1.144
Outer 1J
Inner block SOR point SOR
Time step 1 2 3 4 1 2 3 4
Outer iter. 38 27 43 20 38 32 31 20
CPU Time(sec.) || 3.750 | 2.716 | 2.026 | 1.508 | 3.739 | 2.735 | 1.951 | 1.426

TABLE 2. Summary of speedups for each iterative method
(after 5 time steps)
(—O,: optimized serial; —O: concurrent with vectorization)

Outer Inner -0y -0 Speedup
BIJ |block SOR || 15(2.064| 15]0.552| 3.74
point SOR || 15|5.101| 15[0.802| 6.36
IJ |block SOR | 17|3.982| 17|1.008| 3.95
point SOR || 18|6.771 | 18{0.950| 7.13

iter. time 1iter. time
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