• 제목/요약/키워드: Substructuring

검색결과 102건 처리시간 0.029초

회전 유연 외팔보 진동 시뮬레이션 검증을 위한 테스트 베드 구축 (Developement of A Flexible Rotating Beam Test Bed for Experimental Varification)

  • 강연준;김성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.534-539
    • /
    • 2000
  • A flexible rotating beam test bed has been developed for experimental verification of flexible rotating beam dynamics and vibration. It consists of a flexible arm, harmonic driver reducer, ac servo motor and DSP board with PC. To capture the motion induced stiffening effects of the flexible rotating beam, substructuring model has been established in multibody dynamics simulation. Substructuring model provides better results comparing with experimental data.

  • PDF

Structural modal reanalysis using automated matrix permutation and substructuring

  • Boo, Seung-Hwan
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.105-120
    • /
    • 2019
  • In this paper, a new efficient method for structural modal reanalysis is proposed, which can handle large finite element (FE) models requiring frequent design modifications. The global FE model is divided into a residual part not to be modified and a target part to be modified. Then, an automated matrix permutation and substructuring algorithm is applied to these parts independently. The reduced model for the residual part is calculated and saved in the initial analysis, and the target part is reduced repeatedly, whenever design modifications occur. Then, the reduced model for the target part is assembled with that of the residual part already saved; thus, the final reduced model corresponding to the new design is obtained easily and rapidly. Here, the formulation of the proposed method is derived in detail, and its computational efficiency and reanalysis ability are demonstrated through several engineering problems, including a topological modification.

비선형 구조해석에서 부분구조를 이용한 수정 BFGS법 (A Modified BFGS Method with Substructuring for the Nonlinear Structural Analysis)

  • 류연선;윤길수
    • 대한조선학회지
    • /
    • 제23권3호
    • /
    • pp.39-44
    • /
    • 1986
  • The basic BFGS procedure for the nonlinear finite element analysis is reviewed. Through a simple numerical example, promising characteristics of the method evaluated discussed. Based on the discussion of computational performance, a modified BFGS algorithm with substructuring is derived and proposed for the quasi-static analysis of large-scale nonlinear structures.

  • PDF

CORRIGENDUM TO "A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH A SMALL PENALTY PARAMETER", [J. KOREAN MATH. SOC. 54 (2017), NO. 2, 461-477]

  • Lee, Chang-Ock;Park, Eun-Hee;Park, Jongho
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.791-797
    • /
    • 2021
  • In this corrigendum, we offer a correction to [J. Korean Math. Soc. 54 (2017), No. 2, 461-477]. We construct a counterexample for the strengthened Cauchy-Schwarz inequality used in the original paper. In addition, we provide a new proof for Lemma 5 of the original paper, an estimate for the extremal eigenvalues of the standard unpreconditioned FETI-DP dual operator.

Effects of interface delay in real-time dynamic substructuring tests on a cable for cable-stayed bridge

  • Marsico, Maria Rosaria
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1173-1196
    • /
    • 2014
  • Real-time dynamic substructuring tests have been conducted on a cable-deck system. The cable is representative of a full scale cable for a cable-stayed bridge and it interacts with a deck, numerically modelled as a single-degree-of-freedom system. The purpose of exciting the inclined cable at the bottom is to identify its nonlinear dynamics and to mark the stability boundary of the semi-trivial solution. The latter physically corresponds to the point at which the cable starts to have an out-of-plane response when both input and previous response were in-plane. The numerical and the physical parts of the system interact through a transfer system, which is an actuator, and the input signal generated by the numerical model is assumed to interact instantaneously with the system. However, only an ideal system manifests a perfect correspondence between the desired signal and the applied signal. In fact, the transfer system introduces into the desired input signal a delay, which considerably affects the feedback force that, in turn, is processed to generate a new input. The effectiveness of the control algorithm is measured by using the synchronization technique, while the online adaptive forward prediction algorithm is used to compensate for the delay error, which is present in the performed tests. The response of the cable interacting with the deck has been experimentally observed, both in the presence of delay and when delay is compensated for, and it has been compared with the analytical model. The effects of the interface delay in real-time dynamic substructuring tests conducted on the cable-deck system are extensively discussed.

주파수 응답함수를 이용한 부분구조 합성에서 모드자름 오차 보정에 관한 수치적 연구 (A Case Study on the Importance of Residual Compensation in FRF-based Substructuring)

  • 박윤식;김경호
    • 한국소음진동공학회논문집
    • /
    • 제12권4호
    • /
    • pp.302-309
    • /
    • 2002
  • A FRF-based substructuring method attempts to predict the dynamic characteristics of a complex structure from predetermined FRFs of the comprising uncoupled substructures. Although this method has the advantage of being able to incorporate experimental component FRFs directly, it is prone to errors : measurement errors, coordinate incompleteness, modal incompleteness, etc. Among the various sources of errors, this paper deals with the problem of modal incompleteness (or residual problem) of which importance is underestimated compared to others. It is a well-known rule of thumb that such a problem can be overcome by including modes up to 2 or 3 times the upper frequency of interest. Using a simulated case study, it is demonstrated that even including modes up to 20 times the upper frequency of interest does not guarantee a satisfactory result. A method to compensate the residual errors is introduced. This method requires the whole FRF matrices of substructures which is practically impossible for a complex structure. An applicable alternative is suggested and applied successfully to the case study. Finally, the effects of measurement errors on the residual compensation are also discussed.

전역-부분 근사화에 의한 부구조화 기반 구조재해석 (Substructuring-Based Structural Reanalysis by Global-Local Approximations)

  • 서상구;김경일;황충열;황진하
    • 전산구조공학
    • /
    • 제9권1호
    • /
    • pp.141-149
    • /
    • 1996
  • 부구조화에 근거한 대형 구조의 효율적 근사재해석방법을 제시한다. 대형 구조시스템의 설계최적하에 있어서 가장 큰 문제는 반복되는 해석과 설계시에 드는 많은 계산비용 및 시간이다. 따라서 본 연구에서는 설계 최적화문제의 주요한 도구의 하나인 근사화기법에 근거한 몇가지 재해석방법을 비교.분석하여 효율적 구조재해석 방법을 제시하였다. 대형 구조에 대한 효율적 해석 방법의 하나인 부구조화의 틀에 테일러급수전개와 차원축소방법을 결합한 이 재해석기법은 반복되는 거동해석에 효율적일 뿐아니라, 설계민감도 벡터를 이용하기 때문에 최적설계에도 많은 잇점을 제공한다. 본 알고리즘을 트러스 구조에 적용하여 효율적 및 타당성을 검증하였다.

  • PDF

전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 동정 (Identification of Dynamic Joint Characteristics Using a Multi-domain FRF- based Substructuring Method)

  • 이두호;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.635-644
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared f3r the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate far realistic problems.

  • PDF

전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 추정 (Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method)

  • 황우석;이두호
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.536-545
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, the stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate for realistic problems.

주파수 응답함수 합성법을 이용한 차량 실내 소음 저감에 관한 연구 (A Study On Vehicle Interior Noise Reduction Applying FRF Based Substructuring)

  • 오상훈;강연준;선종천;송문성;김성구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.122-125
    • /
    • 2006
  • The Substructure Synthesis means the technology to predict the dynamic properties of an assembly from the properties of its components, or to predict the effect of a modification on a structure. The FRF Based Substructuring method is a kind of the Substructure Synthesis and very useful to predict the efficiency of the product in the early stage of development. Especially, the Hybrid FBS method is very useful to predict the vehicle NVH characteristics after modifying some components of the vehicle. Target components can be established on the basis of test models and FE models of the prototype constructed in the early stage of development. In this study, the Hybrid FBS method was applied to vehicle subframe and car-body in order to reduce vehicle interior noise induced by engine exciting force.

  • PDF