• 제목/요약/키워드: Substructuring

검색결과 102건 처리시간 0.02초

다단계 부분구조법을 이용한 코일스프링의 유한요소 응력해석 II : 검증 및 해석 (Finite Element Stress Analysis of Coil Springs using a Multi-level Substructuring Method II : Validation and Analysis)

  • 김진영;허훈
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.151-162
    • /
    • 2000
  • This study is concerned with computerized multi-level substructuring methods and stress analysis of coil springs. The purpose of substructuring methods is to reduce computing time and capacity of computer memory by multiple level reduction of the degrees of freedom in large size problems that are modeled by three dimensional continuum finite elements. In this paper, the spring super element developed is investigated with tension, torsion, and bending of a cylindrical bar in order to verify its accuracy and efficiency for the multi-level substructuring method. And then the algorithm is applied to finite element analysis of coil springs. The result demonstrates the validity of the multi-level substructuring method and the efficiency in computing time and memory by providing good computational results in coil spring analysis.

  • PDF

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

SUBSTRUCTURING ALGORITHM FOR STRUCTURAL OPTIMIZATION USING THE FORCE METHOD

  • JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제2권2호
    • /
    • pp.41-47
    • /
    • 1998
  • We consider some numerical solution methods for equality-constrained quadratic problems in the context of structural analysis. Sparse orthogonal schemes for linear least squares problem are adapted to handle the solution step of the force method. We also examine these schemes with substructuring concepts.

  • PDF

부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산 (Domain Decomposition using Substructuring Method and Parallel Computation of the Rigid-Plastic Finite Element Analysis)

  • 박근;양동열
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.474-480
    • /
    • 1998
  • In the present study a domain decomposition scheme using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. in order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method the program is easily paralleized using the Parallel Virtual machine(PVM) library on a work-station cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various number of subdomains and number of processors. The efficiency of the parallel computation is discussed by comparing the results.

  • PDF

부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산 (Domain Decomposition using Substructuring Method and Parallel Comptation of the Rigid-Plastic Finite Element Analysis)

  • 박근;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.246-249
    • /
    • 1998
  • In the present study, domain decomposition using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. In order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method, the program is easily parallelized using the Parallel Virtual Machine(PVM) library on a workstation cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various domain decompositions and number of processors. Comparing the results, it is concluded that the improvement of performance is obtained through the proposed method.

  • PDF

Dynamic Substructuring 기법을 이용한 원통형 구조물의 동특성 확인 (Dynamic Characteristics Identification of Cylindrical Structure Using Dynamic Substructuring Method)

  • 최영인;박노철;이상정;박영필;김진성;박찬일;노우진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.106-109
    • /
    • 2014
  • In order to obtain dynamic behaviors of complex structures, it demands large amounts computational cost and time to perform the numerical analysis. The model reduction method helps these problems by dividing the full model into primary and unnecessary parts. In this research, we perform the modal analysis using the dynamic substructuring method, which is one of the model reduction methods, in order to obtain the dynamic characteristics of the cylindrical structures efficiently. To select the master degrees of freedom (dofs), we consider the mode shapes of the cylindrical structures. And then, we identify the validity of the dynamic substructuring method by applying the method to the simple cylinder and core support barrel (CSB) which is one of the reactor internals with the cylindrical shape. The results demonstrate that the dynamic characteristics from the dynamic substructuring method are well matched with the original method.

  • PDF

다중 전달함수합성 법을 이용한 엔진마운트 시스템의 설계민감도 해석 (Design Sensitivity Analysis of an Engine Mount System using the Multi-Domain FRF-based Substructuring Method)

  • 이두호;황우석
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.237-244
    • /
    • 2002
  • Analyzing acoustic-structural systems such as automobiles and aircraft, the FRF-based substructuring (FBS) method is one of the most powerful tools. In this paper, a general procedure for the parametric sensitivity analysis of vibro-acoustic problems has been presented using the multi-domain FRF-based substructuring formulation. For an acoustic-structural system sub-structured by multiple domains, the substructuring formulation gives the reaction farces on the interface boundaries. The design sensitivity formula is obtained from the direct differentiation of the reaction force expression with respect to the design vector. As a practical application, the proposed design sensitivity formula is applied to an engine mount system of passenger car. An objective of the problem is to identify the most effective engine mounts and bushes in minimizing the interior noise over the concerned rpm range. The comparison of the sensitivity results with those of the finite difference method shows excellent agreement. In addition, stiffness modifications of the mounts and bushes identified through the design sensitivity analysis lead to a successful decrease of the interior noise. This results show usefulness of the present method very well.

Calculation of eigenvalue and eigenvector derivatives with the improved Kron's substructuring method

  • Xia, Yong;Weng, Shun;Xu, You-Lin;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.37-55
    • /
    • 2010
  • For large-scale structures, the calculation of the eigensolution and the eigensensitivity is usually very time-consuming. This paper develops the Kron's substructuring method to compute the first-order derivatives of the eigenvalues and eigenvectors with respect to the structural parameters. The global structure is divided into several substructures. The eigensensitivity of the substructures are calculated via the conventional manner, and then assembled into the eigensensitivity of the global structure by performing some constraints on the derivative matrices of the substructures. With the proposed substructuring method, the eigenvalue and eigenvector derivatives with respect to an elemental parameter are computed within the substructure solely which contains the element, while the derivative matrices of all other substructures with respect to the parameter are zero. Consequently this can reduce the computation cost significantly. The proposed substructuring method is applied to the GARTEUR AG-11 frame and a highway bridge, which is proved to be computationally efficient and accurate for calculation of the eigensensitivity. The influence of the master modes and the division formations are also discussed.

프레임 구조의 계층적 설계 해석 및 최적화 (A Hierarchical Approach for Design Analysis and Optimization of Framed Structures)

  • 황진하;이학술
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.93-102
    • /
    • 2000
  • 본 연구는 부구조화에 기초한 계층적 접근방법을 이용하여 프레임구조에 대한 설계민감도해석과 최적화를 수행한다. 이 방법의 개념적 틀은 유형의 구조계와 무형의 설계과정을 계층적으로 모델링하고 부구조화해석과 다단계최적화를 결합하는데 있다. 여기서 해석과 총합을 위한 수학적 모델은 공통의 부구조화체계와 기반위에서 설정된다. 이러한 수학적 구조적 기반위에서 모듈화된 거동해석과 민감도해석 및 최적화과정이 서로 연계되고 통합된다. 여기서 설계민감도정보는 상태공간방법으로 계산되고, 시스템단계의 활성조건과 중량비 규준을 통해 부구조들의 조율이 이루어진다. 대형프레임구조에 대한 수치 예제들을 통해 본 연구의 타당성 및 효율성과 유용성을 검증한다.

  • PDF

Substructuring and Decoupling of Discrete Systems from Continuous System

  • Eun, Hee-Chang;Koo, Jae-Oh
    • Architectural research
    • /
    • 제14권1호
    • /
    • pp.27-33
    • /
    • 2012
  • This study proposes analytical methods to establish the eigenfunction of continuous system due to substructuring and decoupling of discrete subsystems. The dynamic characteristics of updated continuous system are evaluated by the constraint effect of consistent deformation at the interfaces between two systems. Beginning with the dynamic equation for constrained discrete system, this work estimates the modal eigenmode function for the continuous system due to the addition or deletion of discrete systems. Numerical applications illustrate the validity and applicability of the proposed method.