• Title/Summary/Keyword: Substrate removal rate

Search Result 159, Processing Time 0.028 seconds

Removal of Metallic Cobalt Layers by Reactive Cold Plasma

  • Kim, Yong-Soo;Jeon, Sang-Hwan;Yim, Byung-Joo;Lee, Hyo-Cheol;Jung, Jong-Heon;Kim, Kye-Nam
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.32-42
    • /
    • 2004
  • Recently, plasma surface-cleaning or surface-etching techniques have been focused in respect of the decontamination of spent or used nuclear parts and equipment. In this study the removal rate of metallic cobalt surface is experimentally investigated via its surface etching rate with a $CF_4-o_2$mixed gas plasma. Experimental results reveal that a mixed etchant gas with about 80% $CF_4$-20% $O_2$ (molar) gives the highest reaction rate and the rate reaches 0.06 ${\mu}m$/min at $380^{\circ}C$ and ion-assisted etching dramatically enhances the surface reaction rate. With a negative 300 V DC bias voltage applied to the substrate, the surface reaction initiation temperature lowers and the rate increases about 20 times at $350^{\circ}C$ and up to 0.43 ${\mu}m$/min at $380^{\circ}C$, respectively. Surface morphology analysis confirms the etching rate measurements. Auger spectrum analysis clearly shows the adsorption of fluorine atoms on the reacted surface. From the current experimental findings and the results discussed in previous studies, mechanistic understanding of the surface reaction, fluorination and/or fluoro-carbonylation reaction, is provided.

  • PDF

A Study on the Limiting Factors in Wastewater Treatment by Contact Oxidation Process (접촉담화공정에 의한 폐수처이에 있어서의 제한요권에 관한 연구)

  • 황상용;손종열;우완기
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.2
    • /
    • pp.45-52
    • /
    • 1990
  • This study is to discuss limiting factors influenced on the removal efficiency of organic materials investigated using the polypropyrene biofilter which appropriate to attach micro-organism in order to apply the contact oxidation proce,:5. The results obtained in the experiment were as follows : 1. In the range o: pH 4.0~ 12.0 was obtained the removal efficiency of COD higher than 85% It was proved that variation of pH(4.0 ~ 12.0) was nothing to do with the removal efficiency of substrate in continuous reactor. 2. Temperature to obtain removal efficiency of COD higher than 85% was $10^{\circ}$ ~$40^{\circ}$. Removal efficiency of COD was no less than those at high temperature if MLVSS concentration was maintained 8,000~ 15,000 m/1. 3. In the continuous reactor, the volumetric loading of COD for removal efficiency higher than 95% had to be 0.5~1.5 kg COD/.d below. And then the HRT was Bhrs. 4. In comparison with the conventional activate sludge process, the contact oxidation process was excellent in removal efficiency, sludge production rate and maintenance.

  • PDF

Substrate Interactions in the Biodegradation of Volatile Organic Compounds by a Yeast Strain (Yeast에 의한 휘발성 유기화합물 분해에 있어서의 기질상호관계 해석)

  • Jang, Hyun Sup;Jeong, MI Young;Shin, Shoung Kyu;Song, Ji Hyeon;Hwang, Sun Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.187-193
    • /
    • 2008
  • Biological removal capacities for volatile organic compounds (VOCs) were determined using a yeast strain, Candida tropicalis. In this study, VOCs including toluene, benzene, p-xylene, and styrene as single substrates or mixtures were tested in the batch culture of the yeast strain. In addition, a kinetic model was applied to evaluate substrate interactions between the VOCs. The yeast strain was able to biodegrade each VOC effectively as a growth substrate, implying it could applied to wide range of VOCs. When the yeast strain was subjected to VOCs in mixtures, the biodegradation rate of one substrate were either increased (stimulated) or decreased (inhibited) by the presence of the others. Both benzene and toluene were inhibited by the other VOCs, and substrate interaction parameters estimated in the model indicated that styrene was the strongest inhibitor for the benzene and toluene biodegradation. Meanwhile, the biodegradation of p-xylene and styrene was stimulated by the presence of either benzene or toluene. The biodegradation rate of p-xylene was significantly increased especially by the presence of toluene, and the styrene biodegradation was enhanced greatly by the benzene addition. The results of the substrate interaction by the yeast strain suggest that the biodegradation rates for the VOCs in mixtures should be carefully evaluated. Furthermore, the competitive inhibition coefficient could be applied as a useful index to determine the substrate interaction

혐기성 고정 생물막 공정에서 유입 농도의 변화에 따른 기질 전달 현상

  • Lee, Deok-Hwan;Kim, Do-Han;Park, Yeong-Sik;Yun, Tae-Yeong;Song, Seung-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.351-354
    • /
    • 2002
  • This research discussed about the substrate transport phenomena in anaerobic biofilm. Three anaerobic fixed biofilm reactors were filled with the sludge of anaerobic digestor from Suyoung wastewater treatment plant. After 15 days of biofilm formation periods, suspended solids within the reactors were removed, and each fixed biofilm reactor was supplied with synthetic wastewater of different concentration of 8.00 mgTOC/L, 9.76 mgTOC/L and 18.97 mgTOC/L, respectively. The experimental results in conjunction with substrate transfer phenomena indicated that data - thickness, substrate removal rate. At the low influent substrate concentration(reactor 1 : 8.00 mgTOC/L, reactor 2 : 9.76 mgTOC/L), the rate of substrate utilization($k_v$), effective diffusivity($D_{eff}$) of substrate in biofilm were similar. While $k_v$ and $D_{eff}$ of the high influent substrate concentration(reactor 3 : 18.97 mgTOC/L) were higher than data in the reactors of the low influent substrate concentration.

  • PDF

Removal of Microcystis aeruginosa using Pine Needle Extracts (솔잎추출액을 이용한 Microcystis aeruginosa 제거 연구)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Microcystis aeruginosa (M. aeruginosa) is a cyanobacterium species that can form harmful algal blooms in freshwater bodies worldwide. The use of pine needle extract (PNE) to control nuisance algae by allelopathic inhibition will be environmentally friendly and promising. PNE removed successfully upto 98% of M. aeruginosa at the following optimal conditions: pH 7, $25^{\circ}C$ of temperature, 100 rpm of mixing rate, 5 min of mixing time. These results was indicated that the amount of 1 g/L PNE was removed 1g dryweight/L of M. aeruginosa. The kinetic data showed substrate inhibition kinetics and maximum growth rate was obtained when the M. aeruginosa was grown in medium containing 0.5 g/L of initial concentration of PNE. Different substrate inhibition models were fitted to the kinetic data and found the Luong model was best. The model predicted kinetic parameters were in agreement with the experimental findings. The natural extract, PNE, can be a promising inhibition due to its high efficiency and low dose requirements.

Effect of Working Pressure and Substrate Bias on the Tribology Properties of the Cr-Al-N Coatings (Cr-Al-N 코팅의 마찰마모 특성에 미치는 공정압력과 바이어스 전압의 영향)

  • Choi, Seon-A;Kim, Seong-Won;Lee, Sungmin;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.473-479
    • /
    • 2017
  • CrN coatings have been used as protective coatings for cutting tools, forming tools, and various tribological machining applications because these coatings have high hardness. Cr-Al-N coatings have been investigated to improve the properties of CrN coatings. Cr-Al-N coatings were fabricated by a hybrid physical vapor deposition method consisting of unbalanced magnetron sputtering and arc ion plating with different working pressure and substrate bias voltage. The phase analysis of the composition was performed using XRD (x-ray diffraction). Cr-Al-N coatings were grown with textured CrN phase and (111), (200), and (220) planes. The adhesion strength of the coatings tested by scratch test increased. The friction coefficient and removal rate of the coatings were measured by a ball-on-disk test. The friction coefficient and removal rate of the coatings decreased from 0.46. to 0.22, and from $2.00{\times}10^{-12}m^2/N$ to $1.31{\times}10^{-13}m^2/N$, respectively, with increasing bias voltage. The tribological properties of the coatings increased with increasing substrate bias voltage.

The Role of Primary Clarifier in Biological Processes for Nutrient Removal (생물학적 질소·인제거 공정에서 일차 침전지의 영향)

  • Whang, Gye-Dae;Kim, Tae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • The lab-scale BNR processes fed with Municipal Wastewater Before or After Primary Clarifier (MWBPC or MWAPC) were operated to observe the behavior of particle organic matter in terms of nitrification and denitrification efficiency. As a result of the fractionation of the COD from MWBPC or MWAPC using an aerobic respirometric serum bottle reactor, the total mass of biodegradable organic matter from MWBPC is about 52% greater than the mass from MWAPC. Batch reactors were operated to observe the effect of the Particulate Organic Matter (POM) on substrate utilization for denitrification. Although the consumption of POM for denitrification was observed, the increment of the Specific Denitrification Rate (SDNR) was not great. In terms of the effect of POM on nitrification at different HRTs, activate sludge reactors were operated to determine the optimal HRT when MWBPC and MWAPC were fed relatively. All reactors showed a great organic matter removal efficiency. Reactors fed with MWAPC had obtained the nitrification efficiency above 90% when the HRT of 4 hr, at least, was maintained, while reactors fed with MWBPC had same efficiency when the HRT longer than 5 hr was kept. Three parallel $A^2/O$ systems fed with MWBPC or MWAPC relatively were operated to investigate the effects of POM on BNR processes with varying the HRT of an anoxic reactor. For all systems, the efficiency of organic matter removal and denitrification, respectively, was great and about the same. In case of denitrification efficiency, system with MWAPC had 1.5% lower than system with MWBPC at the same HRT of anoxic reactor of 2 hr, and the increasing the HRT of the anoxic reactor by 1 hr in systems fed with MWBPC resulted in a 3.5% increment. The denitrification rate was similar while the consumption of organic matter in systems fed with MWBPC was higher than system fed with MWBPC. It suggests that POM in MWBPC was not be used significantly as a substrate for denitrification in system with the HRT of 3 hr of an anoxic reactor.

Estimation of Acidic Wastewater Toxicity on the Activated Sludge (활성슬러지에 미치는 산폐수의 독성도 예측)

  • Choi, Kwang-Soo;Ko, Joo-Hyung;Jang, Won-Ho;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2175-2185
    • /
    • 2000
  • Respiration rate should be a reasonable state variable for the activated sludge and could be used to simulate the performance of the activated sludge process. Toxic materials are classified into three groups, competitive, noncompetitive and uncompetitive. They increase/decrease the half saturation coefficient or specific growth rate. that means decreasing of the substrate removal capacity. In this research, a pilot-scale activated sludge process was operated under extended aeration method, and a representative noncompetitive inhibitor, acidic wastewater was applied to establish a respirometry-based toxicity model. Using this model. the correlation coefficient between measured and calculated respiration rate was 0.96 when acidic wastewater(pH 3.9~5.5) was introduced continuously to the aeration tank. Even though respiration rate was decreased by toxic effect of acidic wastewater, effluent substrate concentration represented to COD was deteriorated just a little bit. It might be caused by the low ratio of readily biodegradable substrate in the input substrate. Reduction of respiration rate by decreasing of input substrate concentration was much lower than that by acidic wastewater, and hence it was estimated that the possibility of false toxic alarm caused by decreasing of substrate concentration should be low.

  • PDF

Characteristics of Sulfur oxidation and the Removal of Hydrogen sulfide by Burkholdera[Pseudomonas] cepacia (Burkholderia[Pseudomonas] cepacia의 황 산화 특성 및 황화 수소 제거)

  • 정성제;이은관;전억한;윤인길;박창호
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.466-473
    • /
    • 2001
  • A bacterium was isolated from soils in Suwon, Korea for the purpose of H$_2$S removal using a biofilter system. The isolate was gram-negative, rod-shaped, catalase-positive, motile, and the isolated bacterium showed a positve in utilizing energy sources including citrate, mannitol, sucrose, fructors, and trehalsoe. Based on its biochemical characteristics it was identified as Burkholderia(Pseudomonas) cepacia. The growth rate of the bacterium in thiosulfate medium with yeast extract was 0.15 hr$\^$-1/ and generation time was 4.6 hr. The cell productivity was 8.05 mg/L$.$h and the isolate grew logarithmically up to 12 hr. The maximum rate of sulfur oxidation was 0.18 g-S/L$.$h. The optimum pH and temperature for the growth of the bacterium were 7.0 and 30$\^{C}$, respectively. The pH range for the growth of B. cepacia was 5.0-8.0. The oxidation rate of thiosulfate was lowered by a substrate thiosulfate when the concentration was higher than 0.12 M. both growth rate and sulfur oxidation rate of Burkholderia(Pseudomonas) cepacia was enhanced about 1.5 times with the addition of 0.2% yeast extract. The removal of hydrogen sulfide was investigated by immobilized B. cepacia with Ca-alginate. The maximum rate removal for H$_2$S was 6.25 g$.$$.$h$\^$-1/ when 12 L/h of flow rate was supplied. From this study suggest the immobilized B. cepacia could have a potential for H$_2$S removal.

  • PDF

Development of Up- and Down-flow Constructed Wetland for Advanced Wastewater Treatment in Rural Communities (소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발)

  • Kim, Hyung-Joong;Yoon, Chun-G.;Kwun, Tae-Young;Jung, Kwang-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.113-124
    • /
    • 2006
  • The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.