• Title/Summary/Keyword: Substrate recycling

Search Result 102, Processing Time 0.025 seconds

Thermophilic Anaerobic Digestion of Animal Carcasses (동물 사체의 고온 혐기성 소화)

  • Kim, Sang-Hyoun;Sung, Shi-Hwu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • Animal carcasses have always been and continue to be a major burden in animal production. The main aim of this study is to evaluate the feasibility of thermophilic anaerobic digestion for animal carcasses. A batch test using ground meat and organ as the model substrate showed that animal carcasses arehighly biodegradable at thermophilic anaerobic condition. The volatile solids (VS) destruction and $CH_4$ yieldranged from 52.7 to 58.5% and from 220 to 243 mL/g VS, respectively, at initial substrate VS in the range of 1.5~7.7%. However, high ammonia concentration inhibited continuous operation at substrate VS above 2.5%. As ammonia is formed during the degradation of proteineous organic materials, the major constituent of animal carcasses, the only way to reduce the ammonia concentration would be dilution. Co-digestion with other waste stream without high nitrogen content is recommended as an economically feasible approach for thermophilic digestion of animal carcass.

  • PDF

Dark Fermentative Hydrogen Production using the Wastewater Generated from Food Waste Recycling Facilities (혐기 발효 공정을 통한 음식물류 폐기물 탈리액으로부터 수소 생산)

  • Kim, Dong-Hoon;Lee, Mo-Kwon;Lim, So-Young;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.326-332
    • /
    • 2011
  • The authors examined the effects of operating parameters on the $H_2$ production by dark fermentation of the wastewater generated from food waste recycling facilities, in short "food waste wastewater (FWW)". Central composite design based response surface methodology was applied to analyze the effect of initial pH (5.5-8.5) and substrate concentration (2-20 g Carbo. COD/L) on $H_2$ production. The experiment was conducted under mesophilic ($35^{\circ}C$) condition and a heat-treated ($90^{\circ}C$ for 20min)anaerobic digester sludge was used as a seeding source. Although there was a little difference in carbohydrate removal, $H_2$ yield was largely affected by the experimental conditions, from 0.38 to 1.77 mol $H_2$/mol $hexose_{added}$. By applying regression analysis, $H_2$ yield was well fitted based on the coded value to a second order polynomial equation (p = 0.0243): Y = $1.78-0.17X_1+0.30X_2+0.37X_1X_2-0.29X_1{^2}-0.35X_2{^2}$, where $X_1$, $X_2$, and Y are pH, substrate concentration (g Carbo. COD/L), and hydrogen yield (mol $H_2$/mol $hexose_{added}$), respectively. The 2-D response surface clearly showed a high inter-dependency between initial pH and substrate concentration, and the role of these two factors was to control the pH during fermentation. According to the statistical optimization, the optimum condition of initial pH and substrate concentration were 7.0 and 13.4 g Carbo. COD/L, respectively, under which predicted $H_2$ yield was 1.84 mol $H_2$/mol $hexose_{added}$. Microbial analysis using 16S rRNA PCR-DGGE showed that $Clostridium$ sp. such as $Clostridium$ $perfringens$, $Clostridium$ $sticklandii$, and $Clostridium$ $bifermentans$ were main $H_2$-producers.

EPerformance of high-rate anaerobic sequencing batch reactor treating sewage sludge and food waste (연속 회분식 혐기성 공정을 이용한 하수슬러지와 음식물쓰레기의 혼합소화 거동 특성)

  • Kim, Hyun-Woo;Han, Sun-Kee;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.75-83
    • /
    • 2004
  • Temperature-phased anaerobic digestion (TPAD), anaerobic sequencing batch reactor (ASBR), and co-digestion technologies were combined together in order to overcome low efficiencies of conventional anaerobic sewage sludge digestion processes. In the performance, TPAD-ASBR process showed high VS removal efficiency over 60% up to the organic loading rate (OLR) of 2.7 g VS/L/d. The first-stage of TPAD-ASBR and control system played a most significant role in VS destruction and methane production. Methane production rate (0.79 l $CH_4/L/d$) of the system was higher than that (0.59 l $CH_4/L/d$) of the control system. The substrate characteristics of the sewage sludge, such as low VS concentration (1.5%, w/w) and biodegradability, were properly improved by the addition of food waste as a co-substrate, leading to more efficient VS removal and methane production. With several track studies, it was revealed that the independent solid retention time (SRT) of those systems prevented untreated particles from outflowing and also, extended the retention time of the active biomass for further degradation. Consequently, it was confirmed that the sequencing batch operation of the TPAD process using co-substrate was a promising alternative for the recycling of sewage sludge with low VS content.

  • PDF

Efficient Enantioselective Synthesis of (R)-[3,5-Bis(trifluoromethyl)phenyl] Ethanol by Leifsonia xyli CCTCC M 2010241 Using Isopropanol as Co- Substrate

  • Ouyang, Qi;Wang, Pu;Huang, Jin;Cai, Jinbo;He, Junyao
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.343-350
    • /
    • 2013
  • (R)-[3,5-Bis(trifluoromethyl)phenyl] ethanol is a key chiral intermediate for the synthesis of aprepitant. In this paper, an efficient synthetic process for (R)-[3,5- bis(trifluoromethyl)phenyl] ethanol was developed via the asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone, catalyzed by Leifsonia xyli CCTCC M 2010241 cells using isopropanol as the co-substrate for cofactor recycling. Firstly, the substrate and product solubility and cell membrane permeability of biocatalysts were evaluated with different co-substrate additions into the reaction system, in which isopropanol manifested as the best hydrogen donor of coupled NADH regeneration during the bioreduction of 3,5-bis(trifluoromethyl) acetophenone. Subsequently, the optimization of parameters for the bioreduction were undertaken to improve the effectiveness of the process. The determined efficient reaction system contained 200mM of 3,5-bis(trifluoromethyl) acetophenone, 20% (v/v) of isopropanol, and 300 g/l of wet cells. The bioreduction was executed at $30^{\circ}C$ and 200 rpm for 30 h, and 91.8% of product yield with 99.9% of enantiometric excess (e.e.) was obtained. The established bioreduction reaction system could tolerate higher substrate concentrations of 3,5- bis(trifluoromethyl) acetophenone, and afforded a satisfactory yield and excellent product e.e. for the desired (R)-chiral alcohol, thus providing an alternative to the chemical synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol.

Effect of organic concentration on its degradation kinetics in a burial site (매몰지 내 유기물 농도가 분해 속도에 미치는 영향)

  • Lee, Chae-Young;Choi, Jae-Min;Oh, Seung-Jun;Han, Sun-Kee;Park, Joon-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • The effect of organic substance on its degradation rate in burial site was investigated using batch tests. Substrate were swine and cattle with the initial concentrations of 2, 4, 6, 8, and 10 g VS(volatile solids)/L, respectively. The highest methane production rates of swine and cattle were found at 2 g VS/L as 46.3 and 48.4 ml CH4/g VS.d, respectively. As substrate concentration increased, the methane production rate decreased. The inhibition constants were n and m that were estimated using nonlinear inhibition model. The values of n and m were inhibition constants of methane production rate and ultimate methane yield, respectively. The values of n and m were 4.9 and 0.6 on swine and 1.1 and 0.4 on cattle. The methane production rate was responded sensitively by increase and decrease of substrate concentration, whereas ultimate methane yield do not relatively. From a relation between n and m, inhibitory effect of substrate concentration was confirmed as uncompetitive inhibition.

Recycling Agricultural Wastes as Feed for Mealworm (Tenebrio molitor) (갈색거저리 대량사육을 위한 농업부산물 대체먹이 탐색)

  • Kim, Sun Young;Chung, Tae-Ho;Kim, Seong-Hyun;Song, Sungho;Kim, Namjung
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.367-373
    • /
    • 2014
  • In order to investigate the impact of recycling agricultural wastes as feed for mealworm (Tenebrio molitor), we evaluated the replacing effect by the different level of tangerine shell, Chinese cabbage, king oyster mushroom (Pleurotus eryngii) and Enoki mushroom (Flammulina velutipes) substrates on wheat bran feed. Larval survival rate, larval weight, developmental period of larva, pupation rate and pupal weight were evaluated. In tangerine shell and Chinese cabbage replacement group, no replacing effects found. In all groups replacing by spent King oyster mushroom (Pleurotus eryngii) substrate, survival rate of larva was similar to that of control group but larvae weighed less than control group significantly. Developmental period of larva increases in the group of King oyster mushroom substrate replacement. Larval and pupal weight in Enoki mushroom (Flammulina velutipes) substrate by the level of 40 and 50%, replacement effect showed best results in successive breeding considering pupation rate. It is concluded that replacing 40 and 50% of Enoki mushroom (Flammulina velutipes) substrate is appropriate to substituted diet of Tenebrio molitor larvae.

A study on the parameters for biodegradable characteristics of sewage discharged intermittently (부정기적 발생 오수의 유기물 생분해도 특성 parameter 산정에 관한 연구)

  • Han, Gee-Bong;Lee, Young-Sin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.41-52
    • /
    • 2014
  • In this study, to estimate the biodegradability of sewage discharged intermittently, field scale sampling and analysis was conducted and the results were obtained as follows. According to results of the biodegradability of sewage discharged intermittently, average concentration of TCODcr is 325.5mg/L and ratio of TCOD fraction resulted 100%. Also, average concentration of SCODcr resulted 135.9mg/L and ratio of TCOD fraction resulted 41.8%. Average concentration of Ss showed 74.1mg/L and ratio of TCOD fraction resulted 22.8%. Average concentration of $S_I$ was analyzed to be 61.8mg/L and ratio of TCOD fraction was calculated to 19.0%. Xs which is particulate matter was analyzed to show 27.8mg/L and ratio of TCOD fraction also showed 8.5%. Average concentration of $X_H$ is 103.4mg/L and ratio of TCOD fraction resulted 31.8%. Inert particulate matter showed that average concentration of $X_I$ is 58.5mg/L and ratio of TCOD fraction resulted 18.0%. Accordingly, dissolved biodegradable organic matter showed the ratio of 41.8%, and readily biodegradable matter among this showed 22.8%. Thus intermittent inflow is expected to have less effect with regards equalization by organic loading rate of influent.

A Study on the Effect of Initial pH and Cultivation Temperature of Substrate on the Biomass Production and COD-reduction in the Yeast Cultivation in Sugar Beet Stillages (사탕무 알콜증류폐액을 기질로 효모균체를 생산할 때 기질의 초기 pH와 배양온도가 균체생산량과 COD감소에 미치는 영향)

  • Lee, Ki Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.100-106
    • /
    • 2005
  • Sugar beet stillages were used as a substrate for the production of single cell protein by the thermotolerant yeasts Candida rugosa, Kluyveromyces marxianus and C. utilis. The biomass production increased in accordance with the increase of pH-value, but protein content decreased. C. rugosa showed the highest crude protein production as 3.68g/l and C. utilis 2.9g/l, Kl. marxianus 2.30g/l, respectively. The rate of COD reduction in stillage versus crude protein production of C. rugosa showed the highest value as 0.35~0.39g/l as a good strain for single cell protein production using sugar beet stillages.

  • PDF

Characteristics of Microbial Community and Bio-hydrogen Production from Food Waste (음식물쓰레기의 생물학적 수소생산 및 미생물의 군집특성)

  • Choi, Moon-Su;Lee, Tae-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.86-96
    • /
    • 2012
  • Hydrogen gas production of anaerobic fermentative process from food waste as a substrate was 3.47 mg $H_2/g$ COD. The hydrogen production was little less than the synthetic wastewater with sucrose as a substrate (7.56 mg $H_2/g$ COD). The B/A ratios of the synthetic wastewater and food waste were 3.73 or 8.01 respectively. Butyric acid was more produced when hydrogen production was higher. Microbial community in the samples was analyzed as Escherichia sp., Klebsiella sp., Clostridium sp., Bacterium sp., and Enterobacter sp. Clostridium sp. was detected both samples but Klebsiella sp. was more active with fermentation process of the food waste. Taxonomic description shows that 60% of the microorganism was ${\gamma}-proteobacteria$ and Firmicute and Bacteria was 20% respectively.

Byproducts formation during hydrothermal pretreatment of spent mushroom substrate and effects onto biogas production efficiency (버섯 폐배지의 수열전처리 과정 중 중간산물 생성이 바이오가스 수율에 미치는 영향)

  • Jongkeun Lee;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, spent mushroom substrate (SMS), which consits of lignocellulosic material, was pretreated by hydrothermal method; the changes of biodegradability and methane production yield of pretreated SMS were determined according to formation of lignocellulosic biomass degrading byproducts formation during thermal pretreatment. Based on the results, all hydrothermal pretreatment temperatures showed improved solubilization performance for biomass, and the optimum pretreatment effect was observed at an pretreatment temperature of 150℃ with the highest methane production yield. However, the induced formation of furan derivatives (i.e., 5-hydroxymethylfurfural and furfural) as byproducts during hydrolysis of hemicellulose and cellulose at severe condition lowered biodegradability and methane yield when the hydrothermal pretreatment temperature was higher than 180℃. Thus, this study revealed that hydrothermal pretreatment could promote anaerobic digestion efficiency of lignocellulosic biomass and is of great importance for preventing byproducts formation through pretreatment condition control.