DOI QR코드

DOI QR Code

버섯 폐배지의 수열전처리 과정 중 중간산물 생성이 바이오가스 수율에 미치는 영향

Byproducts formation during hydrothermal pretreatment of spent mushroom substrate and effects onto biogas production efficiency

  • 이종근 (창원대학교 스마트그린공학부 환경에너지공학전공) ;
  • 김대기 (대구대학교 환경기술공학과)
  • Jongkeun Lee (Department of Environmental and Energy Engineering, Changwon National University) ;
  • Daegi Kim (Department of Environmental and Technology Engineering, Daegu University)
  • 투고 : 2022.12.27
  • 심사 : 2023.01.02
  • 발행 : 2023.03.30

초록

본 연구에서는 버섯 폐배지의 혐기성소화 효율 향상을 위해 수열전처리를 실시하고, 리그노셀룰로오스계 물질의 고온 가수분해 과정에서 생성될 수 있는 중간산물이 기질의 생분해도와 바이오가스 전환 효율에 미치는 영향을 함께 판단하였다. 수열전처리 온도의 범위를 150, 180, 210℃로 설정하였으며, 모든 수열전처리 온도에서 기질의 가용화율이 향상되는 결과를 확인할 수 있었다. 추가적으로, 150℃로 버섯 폐배지를 전처리한 경우에는 혐기성소화 효율에 영향을 미칠 수 있는 C/N 비가 개선되는 효과를 함께 확인하였다. 다만 전처리 온도가 180, 210℃인 경우에는 오히려 150℃로 전처리를 수행한 경우에 비해 메탄 생성량이 저하되는 경향을 보였는데, 이는 리그노셀룰로오스 물질의 중간분해 산물인 퓨란유도체의 형성으로 인해 메탄생성균이 영향을 받은 것으로 판단된다. 결국, 수열전처리를 통해 리그노셀룰로오스계 바이오매스의 가용화율 향상을 통한 메탄 생성 향상을 기대할 수 있으나, 혐기성소화 효율을 저해할 수 있는 중간산물이 생성되지 않는 적정 전처리 온도의 확인과 적용이 중요할 것으로 판단된다.

In this study, spent mushroom substrate (SMS), which consits of lignocellulosic material, was pretreated by hydrothermal method; the changes of biodegradability and methane production yield of pretreated SMS were determined according to formation of lignocellulosic biomass degrading byproducts formation during thermal pretreatment. Based on the results, all hydrothermal pretreatment temperatures showed improved solubilization performance for biomass, and the optimum pretreatment effect was observed at an pretreatment temperature of 150℃ with the highest methane production yield. However, the induced formation of furan derivatives (i.e., 5-hydroxymethylfurfural and furfural) as byproducts during hydrolysis of hemicellulose and cellulose at severe condition lowered biodegradability and methane yield when the hydrothermal pretreatment temperature was higher than 180℃. Thus, this study revealed that hydrothermal pretreatment could promote anaerobic digestion efficiency of lignocellulosic biomass and is of great importance for preventing byproducts formation through pretreatment condition control.

키워드

과제정보

이 논문은 2021~2022년도 창원대학교 자율연구과제 연구비 지원으로 수행된 연구결과임.

참고문헌

  1. Williams, B. C., McMullan, J. T. and McCahey, S., "An initial assessment of spent mushroom compost as a potential energy feed-stock", Bioresour Technol, 79, pp. 227~230. (2001). https://doi.org/10.1016/S0960-8524(01)00073-6
  2. Semple, K. T., Watts, N. U. and Fermor, T. R., "Factors affecting the mineralization of [U-14C] benzene in spent mushroom substrate", FEMS Microbiol Lett, 164, pp. 317~321. (1998). https://doi.org/10.1111/j.1574-6968.1998.tb13104.x
  3. Kang, D.-S., Min, K.-J., Kwak, A.-M., Lee, S.-Y. and Kang, H.-W., "Defense response and suppression of Phytophthora blight disease of pepper by water extract from spent mushroom substrate of Lentinula edodes", Plant Pathol J, 33, p. 264. (2017).
  4. Ehaliotis, C., Zervakis, G. I. and Karavitis, P., "Residues and by-products of olive-oil mills for root-zone heating and plant nutrition in organic vegetable production", Sci Hortic, 106, pp. 293~308. (2005). https://doi.org/10.1016/j.scienta.2005.04.006
  5. Kakkar, V. and Dhanda, S., "Comparative evaluation of wheat and paddy straws for mushroom production and feeding residual straws to ruminants", Bioresour Technol, 66, pp. 175~177. (1998). https://doi.org/10.1016/S0960-8524(97)00098-9
  6. Subramaniyam, R. and Vimala, R., "Solid state and submerged fermentation for the production of bioactive substances: a com-parative study", Int J Sci Nat, 3, pp. 480~486. (2012).
  7. Phan, C.-W. and Sabaratnam, V., "Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes", Appl Microbiol Biot, 96, pp. 863~873. (2012). https://doi.org/10.1007/s00253-012-4446-9
  8. Lee, J., Ryu, D. Y., Jang, K. H., Lee, J. W. and Kim, D., "Influence of different pretreatment methods and conditions on the anaerobic digestion efficiency of spent mushroom substrate", Sustainability, 14(23), p. 15854. (2022).
  9. Leong, Y. K., Varjani, S., Lee, D.-J. and Chang, J.-S., "Valorization of spent mushroom substrate for low-carbon biofuel production: Recent advances and developments", Bioresour Technol, 363, p. 128012. (2022).
  10. Atallah, E., Zeaiter, J., Ahmad, M. N., Leahy, J. J. and Kwapinski, W., "Hydrothermal carbonization of spent mushroom compost waste compared against torrefaction and pyrolysis", Fuel Process Technol, 216, p. 106795. (2021).
  11. Lee, J., Lee, K., Sohn, D., Kim, Y. M. and Park, K. Y., "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel", Energy, 153, pp. 913~920. (2018). https://doi.org/10.1016/j.energy.2018.04.112
  12. Kim, D., Park, S. and Park, K. Y., "Upgrading the fuel properties of sludge and low rank coal mixed fuel through hydrothermal carbonization", Energy, 141, pp. 598~602. (2017). https://doi.org/10.1016/j.energy.2017.09.113
  13. Lee, J. and Park, K. Y., "Impact of hydrothermal pretreatment on anaerobic digestion efficiency for lignocellulosic biomass: In-fluence of pretreatment temperature on the formation of biomass-degrading byproducts", Chemosphere, 256, p. 127116. (2020).
  14. Sawatdeenarunat, C., Surendra, K., Takara, D., Oechsner, H. and Khanal, S. K., "Anaerobic digestion of lignocellulosic biomass: challenges and opportunities", Bioresour Technol, 178, pp. 178~186. (2015). https://doi.org/10.1016/j.biortech.2014.09.103
  15. Atelge, M., Atabani, A., Banu, J. R., Krisa, D., Kaya, M., Eskicioglu, C., Kumar, G., Lee, C., Yildiz, Y. and Unalan, S., "A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery", Fuel, 270, p. 117494. (2020).
  16. Varjani, S., Sivashanmugam, P., Tyagi, V. K. and Gunasekaran, M., "Breakthrough in hydrolysis of waste biomass by physi-co-chemical pretreatment processes for efficient anaerobic digestion", Chemosphere, 294, p. 133617. (2022).
  17. Ghasimi, D. S., Aboudi, K., de Kreuk, M., Zandvoort, M. H. and van Lier, J. B., "Impact of lignocellulosicwaste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions", Chem Eng J, 295, pp. 181~191. (2016). https://doi.org/10.1016/j.cej.2016.03.045
  18. Owen, W., Stuckey, D., Healy, J., Young, L. and McCarty, P., "Bioassay for monitoring biochemical methane potential and an-aerobic toxicity", Water Res, 13, pp. 485~492. (1979). https://doi.org/10.1016/0043-1354(79)90043-5
  19. Shelton, D. R. and Tiedje, J. M., "General method for determining anaerobic biodegradation potential", Appl Environ Microb, 47, pp. 850~857. (1984). https://doi.org/10.1128/aem.47.4.850-857.1984
  20. ASTM, "Standard test method for moisture analysis of particulate wood fuels", E871-82. (2006).
  21. ASTM, "Standard test method for volatile matter in the analysis of particulate wood fuels", E872-82. (2006).
  22. ASTM, "Standard test method for determination of ash in biomass", E1755-01. (2007).
  23. AOAC, "Official Methods of Analysis of AOAC International, eighteenth ed", (2005).
  24. Meegoda, J. N., Li, B., Patel, K. and Wang, L. B., "A review of the processes, parameters, and optimization of anaerobic digestion", Int J Environ Res Public Health, 15, p. 2224. (2018).
  25. Zhang, H., Li, J., Huang, G., Yang, Z. and Han, L., "Understanding the synergistic effect and the main factors influencing the enzymatic hydrolyzability of corn stover at low enzyme loading by hydrothermal and/or ultrafine grinding pretreatment", Bioresour Technol, 264, pp. 327~334. (2018). https://doi.org/10.1016/j.biortech.2018.05.090
  26. Phuttaro, C., Sawatdeenarunat, C., Surendra, K., Boonsawang, P., Chaiprapat, S. and Khanal, S. K., "Anaerobic digestion of hy-drothermally-pretreated lignocellulosic biomass: Influence of pretreatment temperatures, inhibitors and soluble organics on methane yield", Bioresour Technol, 284, pp. 128~138. (2019). https://doi.org/10.1016/j.biortech.2019.03.114
  27. Ahmed, B., Aboudi, K., Tyagi, V. K., Alvarez-Gallego, C. J., Fernandez-Guelfo, L. A., Romero-Garcia, L. I. and Kazmi, A., "Im-provement of anaerobic digestion of lignocellulosic biomass by hydrothermal pretreatment", Appl Sci-Basel, 9, p. 3853. (2019).
  28. Song, X., Wachemo, A. C., Zhang, L., Bai, T., Li, X., Zuo, X. and Yuan, H., "Effect of hydrothermal pretreatment severity on the pretreatment characteristics and anaerobic digestion performance of corn stover", Bioresour Technol, 289, p. 121646. (2019).