Browse > Article
http://dx.doi.org/10.4014/jmb.1203.03047

Efficient Enantioselective Synthesis of (R)-[3,5-Bis(trifluoromethyl)phenyl] Ethanol by Leifsonia xyli CCTCC M 2010241 Using Isopropanol as Co- Substrate  

Ouyang, Qi (College of Pharmaceutical Science, Zhejiang University of Technology)
Wang, Pu (College of Pharmaceutical Science, Zhejiang University of Technology)
Huang, Jin (College of Pharmaceutical Science, Zhejiang University of Technology)
Cai, Jinbo (College of Pharmaceutical Science, Zhejiang University of Technology)
He, Junyao (College of Pharmaceutical Science, Zhejiang University of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.3, 2013 , pp. 343-350 More about this Journal
Abstract
(R)-[3,5-Bis(trifluoromethyl)phenyl] ethanol is a key chiral intermediate for the synthesis of aprepitant. In this paper, an efficient synthetic process for (R)-[3,5- bis(trifluoromethyl)phenyl] ethanol was developed via the asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone, catalyzed by Leifsonia xyli CCTCC M 2010241 cells using isopropanol as the co-substrate for cofactor recycling. Firstly, the substrate and product solubility and cell membrane permeability of biocatalysts were evaluated with different co-substrate additions into the reaction system, in which isopropanol manifested as the best hydrogen donor of coupled NADH regeneration during the bioreduction of 3,5-bis(trifluoromethyl) acetophenone. Subsequently, the optimization of parameters for the bioreduction were undertaken to improve the effectiveness of the process. The determined efficient reaction system contained 200mM of 3,5-bis(trifluoromethyl) acetophenone, 20% (v/v) of isopropanol, and 300 g/l of wet cells. The bioreduction was executed at $30^{\circ}C$ and 200 rpm for 30 h, and 91.8% of product yield with 99.9% of enantiometric excess (e.e.) was obtained. The established bioreduction reaction system could tolerate higher substrate concentrations of 3,5- bis(trifluoromethyl) acetophenone, and afforded a satisfactory yield and excellent product e.e. for the desired (R)-chiral alcohol, thus providing an alternative to the chemical synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol.
Keywords
Leifsonia xyli; enantioselective reduction; 3,5- bis(trifluoromethyl) acetophenone; co-enzyme regeneration; (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Goldberg, K., K. Schroer, S. Lütz, and A. Liese. 2007. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols - part II: Whole-cell reductions. Appl. Microbiol. Biotechnol. 76: 249-255.   DOI
2 Asako, H., M. Shimizu, Y. Makino, and N. Itoh. 2010. Biocatalytic reduction system for the production of chiral methyl (R)/(S)-4-bromo-3-hydroxybutyrate. Tetrahedron Lett. 51: 2664-2666.   DOI   ScienceOn
3 Barros-Filho, B. A., F. M. Nunes, M. D. C. F. de Oliveira, T. L. G. Lemos, M. C. de Mattos, G. de Gonzalo, et al. 2010. Bioreduction of prochiral ketones by growing cells of Lasiodiplodia theobromae: Discovery of a versatile biocatalyst for asymmetric synthesis. J. Mol. Catal. B Enzym. 65: 37-40.   DOI   ScienceOn
4 Gelo-Pujic, M., F. Le Guyader, and T. Schlama. 2006. Microbial and homogenous asymmetric catalysis in the reduction of 1- [3,5-bis(trifluoromethyl)phenyl]ethanone. Tetrahedron Asymmetry 17: 2000-2005.   DOI   ScienceOn
5 Hansen, K. B., J. R. Chilenski, R. Desmond, P. N. Devine, E. J. J. Grabowski, R. Heid, et al. 2003. Scalable, efficient process for the synthesis of (R)-3,5-bistrifluoromethylphenyl ethanol via catalytic asymmetric transfer hydrogenation and isolation as a DABCO inclusion complex. Tetrahedron Asymmetry 14: 3581-3587.   DOI   ScienceOn
6 Held, M., A. Schmid, J. B. van Beilen, and B. Witholt. 2000. Biocatalysis. Biological systems for the production of chemicals. Pure Appl. Chem. 72: 1337-1343.   DOI   ScienceOn
7 Homann, M. J., R. B. Vail, E. Previte, M. Tamarez, B. Morgan, D. R. Dodds, and A. Zaks. 2004. Rapid identification of enantioselective ketone reductions using targeted microbial libraries. Tetrahedron. 60: 789-797.   DOI   ScienceOn
8 Kurbanoglu, E. B., K. Zilbeyaz, M. Taskin, and N. I. Kurbanoglu. 2009. Total production of (R)-3,5-bistrifluoromethylphenyl ethanol by asymmetric reduction of 3,5-bis(trifluoromethyl)- acetophenone in the submerged culture of Penicillium expansum isolate. Tetrahedron Asymmetry 20: 2759-2763.   DOI   ScienceOn
9 Hussain, W., D. J. Pollard, M. Truppo, and G. J. Lye. 2008. Enzymatic ketone reductions with co-factor recycling: Improved reactions with ionic liquid co-solvents. J. Mol. Catal. B Enzym. 55: 19-29.   DOI   ScienceOn
10 Hyun Joo, P., J. Jung, H. Choi, K. N. Uhm, and H. K. Kim. 2010. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase. J. Microbiol. Biotechnol. 20: 1300-1306.   DOI   ScienceOn
11 Inoue, K., Y. Makino, and N. Itoh. 2005. Purification and characterization of a novel alcohol dehydrogenase from Leifsonia sp. strain S749: A promising biocatalyst for an asymmetric hydrogen transfer bioreduction. Appl. Environ. Microbiol. 71: 3633-3641.   DOI   ScienceOn
12 Stinson, S. C. 2001. Chiral pharmaceuticals. Chem. Eng. News 79: 79-97.
13 Lou, W. Y., W. Wang, R. F. Li, and M. H. Zong. 2009. Efficient enantioselective reduction of 4'-methoxyacetophenone with immobilized Rhodotorula sp. AS2.2241 cells in a hydrophilic ionic liquid-containing co-solvent system. J. Biotechnol. 143: 190-197.   DOI   ScienceOn
14 Nakamura, K., R. Yamanaka, T. Matsuda, and T. Harada. 2003. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 14: 2659-2681.   DOI   ScienceOn
15 Pollard, D. J., K. Telari, J. Lane, G. Humphrey, C. McWilliams, S. Nidositko, et al. 2006. Asymmetric reduction of alpha, betaunsaturated ketone to (R) allylic alcohol by Candida chilensis. Biotechnol. Bioeng. 93: 674-686.   DOI   ScienceOn
16 Pollard, D. J. and J. M. Woodley. 2007. Biocatalysis for pharmaceutical intermediates: The future is now. Trends Biotechnol. 25: 66-73.   DOI   ScienceOn
17 Quezada, M. A., J. D. Carballeira, and J. V. Sinisterra. 2009. Monascus kaoliang CBS 302.78 immobilized in polyurethane foam using iso-propanol as co-substrate: Optimized immobilization conditions of a fungus as biocatalyst for the reduction of ketones. Bioresour. Technol. 100: 2018-2025.   DOI   ScienceOn
18 Rasor, J. P. and E. Voss. 2001. Enzyme-catalyzed processes in pharmaceutical industry. Appl. Catal. A Gen. 221: 145-158.   DOI   ScienceOn
19 Vankawala, P. J., N. Kolla, C. R. Elati, M. Sreenivasulu, K. A. Kumar, Y. Anjaneyulu, et al. 2007. Efficient synthesis of (1R)- [3,5-bis(trifluoromethyl)phenyl] ethanol, a key intermediate for aprepitant, an NK-1 receptor antagonist. Synth. Commun. 37: 3439-3446.   DOI   ScienceOn
20 Wang, P., J. B. Cai, Q. Ouyang, J. Y. He, and H. Z. Su. 2011. Asymmetric biocatalytic reduction of 3,5-bis(trifluoromethyl) acetophenone to (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol using whole cells of newly isolated Leifsonia xyli HS0904. Appl. Microbiol. Biotechnol. 90: 1897-1904.   DOI   ScienceOn
21 Wichmann, R. and D. Vasic-Racki. 2005. Cofactor regeneration at the lab scale. Adv. Biochem. Eng. Biotechnol. 92: 225-260.
22 Yamamoto, H., K. Mitsuhashi, N. Kimoto, Y. Kobayashi, and N. Esaki. 2005. Robust NADH-regenerator: Improved alphahaloketone- resistant formate dehydrogenase. Appl. Microbiol. Biotechnol. 67: 33-39.   DOI
23 Wu, D. X., Y. X. Guan, H. Q. Wang, and S. J. Yao. 2011. 11$\alpha$- Hydroxylation of 16α,17-epoxyprogesterone by Rhizopus nigricans in a biphasic ionic liquid aqueous system. Bioresour. Technol. 102: 9368-9373.   DOI   ScienceOn
24 Xie, Y., J. H. Xu, W. Y. Lu, and G. Q. Lin. 2009. Adzuki bean: A new resource of biocatalyst for asymmetric reduction of aromatic ketones with high stereoselectivity and substrate tolerance. Bioresour. Technol. 100: 2463-2468.   DOI   ScienceOn