• 제목/요약/키워드: Substrate particle size

검색결과 170건 처리시간 0.029초

증발-응축법에 의해 발생된 은(silver) 나노입자의 구조제어 및 전기적 부착 특성 연구 (Morphological control and electrostatic deposition of silver nanoparticles produced by condensation-evaporation method)

  • 김휘동;안지영;김수형
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.83-90
    • /
    • 2009
  • This paper describes a condensation-evaporation method (CEM) to produce size-controlled spherical silver nanoparticles by perturbing coagulation and coalescence processes in the gas phase. Polydisperse silver nanoparticles generated by the CEM were first introduced into a differential mobility analyzer (DMA) to select a group of silver nanoparticles with same electrical mobility, which also enables to make a group of nanoparticles with elongated structures and same projected area. These silver nanoparticles selected by the DMA were then in-situ sintered at ${\sim}600^{\circ}C$, and then they were observed to turn into spherical shaped nanoparticles by the rapid coalescence process. With the assistance of modified converging-typed quartz reactor, we can also produce the 10 times higher number concentration of silver nanoparticles compared with a general quartz reactor with uniform diameter. Finally, the spherical silver nanoparticles with 30 nm were electrostatically deposited on the surface of silicon substrate with the coverage rate of ~4%/hr. This useful preparation method of size-controlled monodisperse silver nanoparticles developed in this work can be applied to the various studies for characterizing the physical, chemical, optical, and biological properties of nanoparticles as a function of their size.

  • PDF

에어로졸 데포지션 법을 이용하여 제조한 SiO2 후막의 구조 및 광학 특성 (Structural and Optical Properties of SiO2 Thick Films by Aerosol Deposition Process)

  • 장찬익;고중혁
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.6-12
    • /
    • 2013
  • Aerosol deposition(AD) coating that enable fabricate films at low temperature have begun to be widely researched for the integration of ceramics as well to realize high-speed deposition rates. For application of ceramic thick film by AD to display and electronic ceramic industry, fabrication of dense structure with a no cracking is required. In this study, to fabricate dense ceramic thick film, the effect of crystal phase of starting powder was investigated. For this study, amorphous and crystalline $SiO_2$ powders were used as starting powders. Two types of $SiO_2$ powders were deposited on glass substrate by AD. In the case of amorphous $SiO_2$ powder, the deposited films had extremely incompact and opaque layer, irrespective of particle size. In contrast to amorphous powder, in the case of crystalline powder, porous structure layer and dense microstructure with no cracking layer were fabricated depending on the particle size. The optimized starting powder size for dense coating layer was $1{\sim}2{\mu}m$. The transmittance of film reached a maximum of 76% at 800 nm.

펄스 플라즈마에 의한 나노입자 제조 시 하전이 입자의 포집에 미치는 영향 (Effect of Charging on Particle Collection during Synthesis of Nanoparticles by Pulse Plasma)

  • 김광수;김태성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.210-214
    • /
    • 2007
  • Silicon nanoparticles are widely studied as a material with great potential for wide applications. For application to present industry, it should be easy to control the characteristics of nanoparticle including the size and structure. In this paper, we investigated the formation of Si nanoparticle using pulse plasma technology. Plasma technology is already quite common in device industry and the size of nanoparticle can be easily controlled according to plasma pulse duration. An inductively-coupled plasma chamber with RF power (13.56 MHz) was used with DC-biased grid $(-200\sim+200\;V)$ installed above the substrate. In order to measure the shape and size of nanoparticle, TEM was used. It was found that the size of nanoparticles can be controlled well with the plasma pulse duration and the collection efficiency is increased with the use of either negative or positive DC-bias.

  • PDF

전기영동적층법을 통한 판상 알루미나 입자와 전기영동 수지의 배향 유무기 복합체 제조 및 물성평가 (Preparation and Characterization of a Layered Organic-inorganic Composite by the Electrophoretic Deposition of Plate-shaped Al2O3 Particles and Electrophoretic Resin)

  • 박희정;임형미;최성철;김영희
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.460-465
    • /
    • 2013
  • Plate-shaped inorganic particles are coated onto a stainless steel substrate by the electrophoretic deposition of a precursor slurry which includes the inorganic particles of $Al_2O_3$ and polymer resin in mixed solvents to mimic the abalone shell structure, which is a composite of plate-shaped inorganic particles and organic interlayer binding materials with a layered orientation. The process parameters of the electrophoretic deposition include the voltage, coating time, and conductivity of the substrate. In addition, the suspension parameters are the particle size, concentration, viscosity, conductivity, and stability. We prepared an organic-inorganic composite coating with a high inorganic solid content by arraying the plate-shaped $Al_2O_3$ particles and electrophoretic resin via an electrophoretic deposition method. We analyzed the effect of the slurry composition and the electrophoretic deposition process parameters on the physical, mechanical and thermal properties of the coating layer, i.e., the thickness, density, particle orientation, Young's modulus and thermogravimetric analysis results.

다중 전극 어레이 기반 전기수력학 인쇄 기술을 이용한 생분해성 고분자의 2차원 마이크로 패터닝 연구 (A Study of 2D Micro-patterning of Biodegradable Polymers by MEA (Multi Electrode Array)-based Electrohydrodynamic (EHD) printing)

  • 황태헌;류원형
    • 한국입자에어로졸학회지
    • /
    • 제13권3호
    • /
    • pp.111-118
    • /
    • 2017
  • 전기수력학 (Electrohydrodynamic, EHD) 프린팅 기술은 전기장을 이용하여 일반 프린팅 기술보다 더 작은 크기의 액적을 분사하고 패터닝할 수 있는 장점을 갖고 있다. EHD 프린팅은 일반적으로 인쇄 노즐이나 기판을 X-Y 방향으로 움직여 패턴을 제작하는 방식으로 사용되어 왔으나 본 연구에서는 다중전극 어레이 (Multielectrode array, MEA)를 이용하여 원하는 기판위에 2차원의 패터닝이 가능함을 연구하였다. 특히, 약물전달장치 등의 바이오메디칼 디바이스로의 응용이 가능한 생분해성 고분자와 염료를 혼합한 잉크의 EHD 프린팅을 시도하였으며 노즐이나 기판의 움직임 없이 안정적으로 분사할 수 있는 2차원 범위에 대한 연구를 통해 최소 약 $6{\mu}m$ 크기를 갖는 패턴을 노즐 위치로부터 수평방향으로 약 1 mm 범위까지 안정적 패터닝이 가능함을 확인하였다. 또한, MEA 전극 간의 거리에 의한 패턴 조밀도의 한계를 극복하기 위해 MEA와 인쇄가 이루어지는 기판과의 상대적 이동을 통해 더 조밀한 패터닝이 가능함을 보여주었다.

상온진공 과립분사에 의한 지르코니아 필름의 코팅거동 (Coating behavior of zirconia film fabricated by granule spray in vacuum)

  • ;강영림;박운익;박동수;박찬
    • 한국결정성장학회지
    • /
    • 제32권5호
    • /
    • pp.205-211
    • /
    • 2022
  • GSV (Granule Spray in Vacuum)는 상온의 진공하에서 나노 크기의 치밀한 세라믹 코팅층을 형성하는 방법이다. 일반적으로, 단사정의 지르코니아는 1150℃에서 정방정으로 변태하며, 이때 6.5 %의 체적변화를 일으켜 치밀한 단사정의 지르코니아를 만들기 어렵다. 본 연구에서는 코팅 효율에 대한 두 가지 처리 변수의 효과를 조사하는 데 중점을 두었다. 아울러, 특별한 가열과정 없이 형성된 필름의 미세구조에 관찰하였다. 샘플 기판에 증착된 지르코니아 필름에 대한 X-ray diffractometer (XRD) 분석은 단사정 지르코니아 필름이 성공적으로 증착되었음을 보여주었다.

저온분사 공정에서 알루미늄 분말의 산화가 임계 적층 속도에 미치는 영향 (Oxidation Effect on the Critical Velocity of Pure Al Feedstock Deposition in the Kinetic Spraying Process)

  • 강기철;윤상훈;지율권;이창희
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.35-41
    • /
    • 2007
  • In kinetic spraying process, the critical velocity is an important criterion which determines the deposition of a feedstock particle onto the substrate. In other studies, it was experimentally and numerically proven that the critical velocity is determined by the physical and mechanical properties and the state of materials such as initial temperature, size and the extent of oxidation. Compared to un-oxidized feedstock, oxidized feedstock required a greater kinetic energy of in-flight particle to break away oxide film during impact. The oxide film formed on the surface of particle and substrate is of a relatively higher brittleness and hardness than those of general metals. Because of its physical characteristics, the oxide significantly affected the deposition behavior and critical velocity. In this study, in order to investigate the effects of oxidation on the deposition behavior and critical velocity of feedstock, oxygen contents of Al feedstock were artificially controlled, individual particle impact tests were carried out and the velocities of in-flight Al feedstock was measured for a wide range of process gas conditions. As a result, as the oxygen contents of Al feedstock increased, the critical velocity increased.

Structural, Electrical and Optical Properties of ZnO Thin Films Grown at Various Plume-Substrate Angles by Pulsed Laser Deposition

  • Kim Jae-Won;Kang Hong-Seong;Lee Sang-Yeol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.97-101
    • /
    • 2005
  • ZnO thin films were grown at different plume-substrate (P-S) angles of 90$^{\circ}$ (on-axis PLD), 45$^{\circ}$ and 0$^{\circ}$ (off-axis PLD) using pulsed laser deposition. The x-ray diffraction pattern exhibiting a dominant (002) and a minor (101) peak of ZnO indicates all films were strongly c-axis oriented. By observing of (002) peak, the FWHMs of ZnO (002) peaks decreased and c-axis lattice constant approached the value of bulk ZnO as P-S angle decreased. Whereas the carrier concentration of ZnO thin film deposited at P-S angle of 90$^{\circ}$ was ~ 10$^{19}$ /cm$^{3}$, the Hall measurement of ZnO thin films deposited at P-S angles of 0$^{\circ}$ and 45$^{\circ}$ was impossible due to the decrease of the carrier concentration by the improvement of stoichiometry and crystalline quality. By decreasing P-S angle, the grain size of the films and the UV intensity investigated by photoluminescence (PL) increased and UV peak position showed red shift. The improvement of properties in ZnO thin films deposited by off-axis technique was due to the decrease of repulsive force between a substrate and the particle in plume and the relaxation of supersaturation.

플렉시블 디스플레이용 박막 도포를 위한 초정밀 슬롯다이 코팅장비 (High-Precision Slot-Die Coating Machine for Thin Films of Flexible Display)

  • 최영만;이승현;조정대
    • 한국정밀공학회지
    • /
    • 제31권6호
    • /
    • pp.491-495
    • /
    • 2014
  • We developed a compact high-precision slot-die coating machine for thin-film deposition on a flexible substrate. For smooth and precise coating, air-bearing and linear motor system were employed to minimize velocity ripple. The gap control mechanism is specially designed to have repeatability of gap between nozzle and substrate under 1 ${\mu}m$. Due to extremely precise gap control, the machine can coat thin-films down to 50 nm with $200mm{\times}100mm$ size. A thin film of Ag nano-particle ink is coated for demonstration.

Mevinolin Production by Monascus pilosus IFO 480 in Solid State Fermentation of Soymeal

  • Pyo, Young-Hee;Lee, Young-Chul
    • Food Science and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.647-649
    • /
    • 2006
  • Mevinolin, a fungal metabolite, is a potent inhibitor of 3-hydroxy-methyl-3-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-controlling enzyme in cholesterol biosynthesis. In this investigation, the optimum factors for mevinolin production by Monascus pilosus IFO 480 in soymeal fermentation were studied. The highest yield of mevinolin, 2.82 mg mevinolin per g dry weight, without citrinin (a toxic fungal secondary metabolite) was obtained after 21 days of fermentation at $30^{\circ}C$ at 65% moisture content, particle size 0.6-0.9 mm, and initial substrate pH of 6.0. Mevinolin was present in the fermentation substrate predominantly in the hydroxycarboxylate form (open lactone, 92.1-97.3%), which is currently being used as a hypocholesterolemic agent.