DOI QR코드

DOI QR Code

A Study of 2D Micro-patterning of Biodegradable Polymers by MEA (Multi Electrode Array)-based Electrohydrodynamic (EHD) printing

다중 전극 어레이 기반 전기수력학 인쇄 기술을 이용한 생분해성 고분자의 2차원 마이크로 패터닝 연구

  • Hwang, Tae Heon (Department of Mechanical Engineering, Yonsei University) ;
  • Ryu, WonHyoung (Department of Mechanical Engineering, Yonsei University)
  • 황태헌 (연세대학교 기계공학부) ;
  • 류원형 (연세대학교 기계공학부)
  • Received : 2017.08.15
  • Accepted : 2017.08.21
  • Published : 2017.09.30

Abstract

Electrohydrodynamic (EHD) printing with the aid of strong electric fields can generate and pattern droplets that are smaller than droplets by other printing technologies. Conventional EHD printing has created two-dimensional (2D) patterns by moving its nozzle or a substrate in X and Y directions. In this study, we aimed to develop an EHD system that can create 2D patterns using a multielectrode array (MEA) without moving a nozzle or substrate. In particular, printing ink mixtures of biodegradable polymers and model dyes was patterned on a thin film made of another biodegradable polymer. Without movement of a nozzle and substrate, stable 2D patterning of minimum $6{\mu}m$ size over a range of about 1 mm away from the nozzle position was achieved by MEA control only. We also demonstrated the possibility of denser 2D pattering of the ink mixtures by moving a target substrate relative to MEA position.

전기수력학 (Electrohydrodynamic, EHD) 프린팅 기술은 전기장을 이용하여 일반 프린팅 기술보다 더 작은 크기의 액적을 분사하고 패터닝할 수 있는 장점을 갖고 있다. EHD 프린팅은 일반적으로 인쇄 노즐이나 기판을 X-Y 방향으로 움직여 패턴을 제작하는 방식으로 사용되어 왔으나 본 연구에서는 다중전극 어레이 (Multielectrode array, MEA)를 이용하여 원하는 기판위에 2차원의 패터닝이 가능함을 연구하였다. 특히, 약물전달장치 등의 바이오메디칼 디바이스로의 응용이 가능한 생분해성 고분자와 염료를 혼합한 잉크의 EHD 프린팅을 시도하였으며 노즐이나 기판의 움직임 없이 안정적으로 분사할 수 있는 2차원 범위에 대한 연구를 통해 최소 약 $6{\mu}m$ 크기를 갖는 패턴을 노즐 위치로부터 수평방향으로 약 1 mm 범위까지 안정적 패터닝이 가능함을 확인하였다. 또한, MEA 전극 간의 거리에 의한 패턴 조밀도의 한계를 극복하기 위해 MEA와 인쇄가 이루어지는 기판과의 상대적 이동을 통해 더 조밀한 패터닝이 가능함을 보여주었다.

Keywords

References

  1. Barton, K., Mishra, S., Shorter, K. A., Alleyne, A., Ferreira, P., & Rogers, J. (2010). A desktop electrohydrodynamic jet printing system. Mechatronics, 20(5), 611-616. https://doi.org/10.1016/j.mechatronics.2010.05.004
  2. Calvert, P. (2001). Inkjet printing for materials and devices. Chemistry of Materials, 13(10), 3299- 3305. https://doi.org/10.1021/cm0101632
  3. Choi, H. K., Park, J. U., Park, O. O., Ferreira, P. M., Georgiadis, J. G., & Rogers, J. A. (2008). Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Applied Physics Letters, 92, 123109. https://doi.org/10.1063/1.2903700
  4. Cooke, M. N., Fisher, J. P., Dean, D., Rimnac, C., & Mikos, A. G. (2003). Use of stereolithography to manufacture critical‐sized 3D biodegradable scaffolds for bone ingrowth. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 64(2), 65-69.
  5. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., & Spence, D. M. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences Analytical Chemistry, 86, 3240-3253. https://doi.org/10.1021/ac403397r
  6. Hwang, T. H., Kim, J. B., Yang, D. S., Park, Y. I., & Ryu, W. (2013). Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems. Journal of Micromechanics and Microengineering, 23, 035012. https://doi.org/10.1088/0960-1317/23/3/035012
  7. Hwang, T. H., Kim, Y. J., Chung, H., & Ryu, W. (2016). Motionless Electrohydrodynamic (EHD) Printing of Biodegradable Polymer Micro Patterns. Microelectronic Engineering, 161, 43-51. https://doi.org/10.1016/j.mee.2016.03.039
  8. Lewis, J. A., & Ahn, B. Y. (2015). Device fabrication: Three-dimensional printed electronics. Nature, 518, 42-43. https://doi.org/10.1038/518042a
  9. Mishra, S., Barton, K. L., Alleyne, A. G., Ferreira, P. M., & Rogers, J. A. (2010). High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. Journal of Micromechanics and Microengineering, 20, 095026. https://doi.org/10.1088/0960-1317/20/9/095026
  10. Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S. (2015). Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composites Part B: Engineering, 80, 369-378. https://doi.org/10.1016/j.compositesb.2015.06.013
  11. Park, J. U., Hardy, M., Kang, S. J., Barton, K., Adair, K., Mukhopadhyay, D. K., . . . Rogers, J. A. (2007). High-resolution electrohydrodynamic jet printing. Nature Materials, 6(10), 782-789. https://doi.org/10.1038/nmat1974
  12. Park, J. U., Lee, J. H., Paik, U., Lu, Y., & Rogers, J. A. (2008). Nanoscale Patterns of Oligonucleotides Formed by Electrohydrodynamic Jet Printing with Applications in Biosensing and Nanomaterials Assembly. Nano Letters, 8(12), 4210-4216. https://doi.org/10.1021/nl801832v
  13. Shirazi, S. F. S., Gharehkhani, S., Mehrali, M., Yarmand, H., Metselaar, H. S. C., Kadri, N. A., & Osman, N. A. A. (2015). A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and Technology of Advanced Materials, 16, 033502. https://doi.org/10.1088/1468-6996/16/3/033502
  14. Sutanto, E., Shigeta, K., Kim, Y. K., Graf, P. G., Hoelzle, D. J., Barton, K. L., . . . Rogers, J. A. (2012). A multimaterial electrohydrodynamic jet (E-jet) printing system. Journal of Micromechanics and Microengineering, 22, 045008. https://doi.org/10.1088/0960-1317/22/4/045008
  15. Taylor, G. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 280, 383-397. https://doi.org/10.1098/rspa.1964.0151