• Title/Summary/Keyword: Substrate film

Search Result 4,448, Processing Time 0.032 seconds

Microstructure and Dielectric Properties of (Ba,Sr)TiO$_3$ Thin Film with Thickness (박막 두께에 따른 (Ba,Sr)TiO$_3$박막의 구조 및 유전특성)

  • 이상철;임성수;정장호;이성갑;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.121-124
    • /
    • 1999
  • The (Ba,Sr)TiO$_3$[BST] thin film were fabricated on the Pt/Ti/SiO$_2$/Si substrate by RF sputtering technique. The structural properties of the BST thin films were investigated with deposition time and substrate temperature by XRD. In the case of the BST thin films which has the deposition thin of 20 min, second phases and BST (111) peaks were increased with increasing the temperature of substrate. The capacitance of the BST thin film (deposition time of 20 min.) was decreased with the substrate temperature and was 1500pF with applied voltage of 1V.

  • PDF

Effect of Substrate Bias Voltage on the Electrical Properties of ZnO:Al Transparent Conducting Film Deposited on Organic Substrate (유기물 기판 위에 증착된 ZnO:Al 투명전도막의 전기적 특성에 미치는 기판 바이어스 전압의 효과)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.78-84
    • /
    • 2009
  • In this paper, ZnO:Al thin film was deposited on polyethylene terephthalate(PET) substrate by capacitively coupled r. f. magnetron sputtering method from a ZnO target mixed with 2wt[%] Al2O3 to investigate the possible application of ZnO:Al film as a transparent conducting electrode for film typed DSCs. The effect of substrate bias on the electrical properties and film structure were studied. The results showed that a positive bias applied to the substrate during sputtering contributed to an improvement of electrical properties of the film by attracting electrons in the plasma to bombard the growing films. These bombardments provided additional energy to the growing ZnO:Al film on the substrate, resulting in significant variations in film structure and electrical properties. Electrical resistivity of the film decreases significantly as the positive bias increases up to +30[V] However, as the positive bias increases over +30[V], the resistivity decreases. The transmittance varies little as the substrate bias is increased from 0 to +60[V], and as r. f. powers increases from 160[W] to 240[W]. The film with electrical resistivity as low as $1.8{\times}10^{-3}[{\Omega}-cm]$ and optical transmittance of about 87.8[%] were obtained for 1,012[nm] thick film deposited with a substrate bias of +30[V].

Electrical and optical properties of ZnO:Al transparent conducting films deposited on flexible polymeric substrate (플렉시블한 폴리머 기판위에 증착된 ZnO:Al 투명전도막의 전기 및 광학적 특성)

  • Jessie, Darma;Park, Byung-Wook;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1262-1263
    • /
    • 2008
  • Recently film-typed dye sensitized solar cell(DSC) attracts much attention with increasing applications for its flexibility and transparency. The ZnO:Al thin film, which serves mainly as transparent conducting electrode, Aluminium-doped zinc oxide(ZnO:Al) thin film has emerged as one of the most promising transparent conducting films since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r. f. magnetron sputtering method. The effects of gas pressure and r. f. discharge power on the morphological, electrical and optical properties of ZnO:Al thin film were studied. Especially the variation in substrate thickness after sputtering and surface morphology of the substrate were investigated and clarified. The results showed that the film deposited on the PET substrate at r. f. discharge power of 180 W showed the minimum resistivity of about $1.5{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 93%.

  • PDF

Influence of Substrate Temperature of KLN Thin Film Deposited on Amorphoous Substrate (비정질 기판위에 증착한 KLN 박막의 기판온도에 의한 영향)

  • 박성근;최병진;홍영호;전병억;김진수;백민수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • The influences of substrate temperature were studied when fabricating KLN thin film on amorphous substrate using an rf-magnetron sputtering method. Investigating the vaporization temperature of the each element, the excess ratio of target and the optimum deposition conditions were effectively selected when thin filmizing a material which have elements with large difference fo vaporization temperature. In order to compensate K and Li which have lower vaporization temperatures than Nb, KLN target of composition excess with K of 60% and Li of 30% was used. KLN thin film fabricated on Corning 1737 glass substrate had single KLN phase above 58$0^{\circ}C$ of substrate temperature and crystallized to c-axis direction. The optimum conditions were rf power of 100W, process pressure of 150mTorr, and substrate temperature of $600^{\circ}C$.

  • PDF

Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method (기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향)

  • Kim, Hyun-Soo;Jang, Ho-Won;Kang, Jong-Yoon;Kim, Jin-Sang;Yoon, Suk-Jin;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

The Effects of SiO Gas Barrier Film on the Depositing IZO/Glass Thin Film (IZO/Glass 성막 시 SiO가스배리어막의 영향)

  • Kim, Do-Hyoung;Yoon, Han-Ki;Qiu, Zhiyong;Murakami, Ri-ichi
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.215-219
    • /
    • 2007
  • In this work, the indium zinc oxide (IZO) films had been deposited on the glass substrate coated with the SiO film. Based on a comparative investigation of the IZO monolayer and IZO/SiO multilayer, it is shown that the thickness of SiO film has a great effect on the mechanical properties of the thin films. The AFM images of the IZO thin film included the SiO film were shown smoother surfaces than monolayer. Resistivity was in inverse proportion to Mobility. If it deposited the SiO film on the substrate, the layer of change was generated between two layer(SiO and substrate). The layer of change influenced resistance because of oxygen content was more than the IZO monolayer.

  • PDF

Commercialization & Process Optimization of Protective Film on Nano Silver Transparent Conductive Substrate by Means of Large Scale Roll-to-Roll Coating and Experimental Design (나노실버 투명전도소재 보호필름의 개발 및 공정 최적화와 실험 계획법을 이용한 검증)

  • Park, Kwang-Min;Lee, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.813-820
    • /
    • 2015
  • We have studied commercialization and process optimization of protective film on transparent conductive coated substrate, nano silver on flexible PET (poly ethylene terephthalate), by means of roll-to-roll micro-gravure coater. Nanosilver on flexible PET substrate is potential materials to replace ITO (indium tin oxide). Protective film is most important to maintain unique silver pattern on top of transparent PET. PSA pressure sensitive adhesives) was developed solely for nano silver on PET and protective film was successfully laminated. We have optimized all process conditions such as coating thickness, line speed and aging time & temperature via experimental design. Transparent conductive film and its protective film developed in this research are commercially available at this moment.

Effect of MgO Buffer Layer on the Structural Properties of Sputter-grown ZnO Thin Film (스퍼터링법으로 증착된 산화아연 박막의 구조적 성질에 대한 산화마그네슘 완충층의 효과 연구)

  • Lim, Young-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.673-678
    • /
    • 2009
  • The effect of MgO buffer layer on the structural properties of sputter-grown ZnO thin film was investigated. Sapphire (0001) and Si (100) substrate were used for the growth and MgO buffer layer was inserted between ZnO thin film and the substrate. X-ray diffraction pattern indicated that enhanced crystallinity in the ZnO thin film grown was achieved by inserting very thin MgO buffer layer, regardless of the substrate type. The strain in the ZnO thin film could also be controlled by the insertion of the MgO buffer layer, and tendency of the strain was strongly dependent on the substrate type.

Formation of Quantum Dot Fluorescent Monolayer Film using Peptide Bond

  • Inami, Watau;Nanbu, Koichi;Miyakawa, Atsuo;Kawata, Yoshimasa
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • We present a method for preparing a quantum dot fluorescent monolayer film on a glass substrate. Since nanoparticles aggregate easily, it is difficult to prepare a nanoparticle monolayer film. We have used a covalent bond, the peptide bond, to fix quantum dots on the glass substrate. The surface of the quantum dot was functionalized with carboxyl groups, and the glass substrate was also functionalized with amino groups using a silane coupling agent. The carboxyl group can be strongly coupled to the amino group. We were able to successfully prepare a monolayer film of CdSe quantum dots on the glass substrate.

Polymer Thin-Film Transistors Fabricated on a Paper (종이 기판을 이용한 유기박막 트랜지스터의 제작)

  • Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.504-505
    • /
    • 2005
  • In this report, we demonstrate a high performance polymer thin-film transistor fabricated on a paper substrate. As a water barrier layer, parylene was coated on the paper substrate by using vacuum deposition process. Using poly (3-hexylthiophene) as an active layer, a polymer thin-film transistor with field-effect of up to 0.086 $cm^2/V{\cdot}s$ and on/off ratio of $10^4$ was achieved. The fabrication of polymer thin-film transistor built on a cheap paper substrate is expected to open a channel for future applications in flexible and disposable electronics with extremely low-cost.

  • PDF