• Title/Summary/Keyword: Substrate coupling effect

Search Result 59, Processing Time 0.028 seconds

Investigation of the Light Reflection from Dielectric Thin Films Coated on Substrates (기판 위에 입혀진 유전체 박막의 빛 반사에 관한 연구)

  • Kim, Deok Woo;Kim, Jiung;Kim, Byoung Joo;Cha, Myoungsik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.321-327
    • /
    • 2020
  • We investigated the light reflection from thin films coated on substrates. Using a prism with a high refractive index as the incident medium, the phenomena of the total internal reflection (TIR) of the prism/film/substrate system and the light coupling into the optical waveguide formed by the air/film/substrate system were comprehensively studied and compared. If the refractive index of the thin film is greater than that of the substrate, within the TIR region of the substrate, sharp reflection minima occur at specific angles where the waveguide modes are excited, that can be used to accurately measure the refractive index and thickness of a thin film. On the other hand, if the refractive index of the thin film is smaller than that of the substrate, such waveguide modes do not exist. In this case, although not so distinct as a bulk medium, the TIR effect of the thin film is still observable, accompanied by an interference pattern. In this study we analyzed the overall reflection phenomena occurring from prism/film/substrate structures, to investigate the possibility of measuring the refractive index of a thin film in both cases.

High-Performance Silicon-on-Insulator Based Dual-Gate Ion-Sensitive Field Effect Transistor with Flexible Polyimide Substrate-based Extended Gate (유연한 폴리이미드 기판 위에 구현된 확장형 게이트를 갖는 Silicon-on-Insulator 기반 고성능 이중게이트 이온 감지 전계 효과 트랜지스터)

  • Lim, Cheol-Min;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.698-703
    • /
    • 2015
  • In this study, we fabricated the dual gate (DG) ion-sensitive field-effect-transistor (ISFET) with flexible polyimide (PI) extended gate (EG). The DG ISFETs significantly enhanced the sensitivity of pH in electrolytes from 60 mV/pH to 1152.17 mV/pH and effectively improved the drift and hysteresis phenomenon. This is attributed to the capacitive coupling effect between top gate and bottom gate insulators of the channel in silicon-on-transistor (SOI) metal-oxide-semiconductor (MOS) FETs. Accordingly, it is expected that the PI-EG based DG-ISFETs is promising technology for high-performance flexible biosensor applications.

Magnetoresistance Properties in Synthetic CoFe/Ru/CoFe/FeMn Spin Valves with Different Pinned Layer Thicknesses (합성형 반강자성체인 CoFe/Ru/CoFe/FeMn에서 고정층의 두께 차이에 따른 스핀 밸브 구호의 자기저항 특성)

  • 김광윤
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.211-216
    • /
    • 2001
  • Top synthetic spin valves wi th structure Ta/NiFe/CoFe/Cu/CoFe(Pl)/Ru/CoFe(P2)/FeMn/Ta on Si (100) substrate with SiO$_2$ of 1500 were prepared by dc magnetron sputtering system. We have changed only the thickness of the free layer and the thickness difference (Pl-P2) in the two ferromagnetic layers separated by Ru, and investigated the effect of magnetic film thickness on the GMR properties and the interlayer coupling field in a spin valve with a synthetic antiferromagnet. As thickness difference of pinned layer was decreased from +25 to -25 , MR ratio was decreased gradually. However, there was a dip zone indicating a big change of MR ratio around Pl = P2, which can be due to the large canting of pinned layers. The modified Neel model was suggested for the top synthetic spin valve to explain the interlayer coupling field according to the thickness change of ferromagnetic layers. The interlayer coupling field was decreased due to the magnetostatic coupling (orange peel coupling) as suggested by model. However, the interlayer coupling field was not explained at the dip zone by the modified Neel model. The deviation of modified Neel model at the dip zone could be due to the largely canting of the pinned layers as well, which depends on different thickness in synthetic antiferromagnetic structure.

  • PDF

Effect of Highly Oriented Layer on GMR and Magnetic Properties of NiFe/Cu Thin Film Prepared by Magnetron Sputtering

  • Yoo, Yong-Goo;Yu, Seong-Cho;Min, Seong-Gi;Kim, Kyeong-Sup;Jang, Pyung-Woo
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.129-131
    • /
    • 2001
  • In order to investigate the effect of the interface on GMR, [NiFe(25 ${\AA}$)/Cu(24${\AA}$)]$_2$/Si thin film was epitaxially grown on HF-treated Si (001) substrate using a DC magnetron sputtering method. Typical GMR effects could be observed in epitaxial film with a weak antiferromagnetic exchange coupling while non epitaxial film showed unsaturated and broad MR curves probably due to inter-diffusion between NiFe and Cu layers. Ferromagnetic resonance (FMR) experiment showed two distinct absorption peaks in all films. Each peak was revealed to come from each NiFe layer with different magnetic property. In FMR measurement very clear interface in epitaxial films could be confirmed by a lower value of line width (ΔH) and higher M$\sub$s/ of epitaxial film than those of non epitaxial films, respectively.

  • PDF

The Surface Treatment Effect for Nanoimprint Lithography using Vapor Deposition of Silane Coupling Agent (나노임프린트 공정에서 실란커플링제 기상증착을 이용한 표면처리 효과)

  • Lee, Dong-Il;kim, Ki-Don;Jeong, Jun-Ho;Lee, Eung-Sug;Choi, Dae-Geun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • Nanoimprint lithography (NIL) is useful technique because of its low cost and high throughput capability for the fabrication of sub-micrometer patterns which has potential applications in micro-optics, magnetic memory devices, bio sensors, and photonic crystals. Usually, a chemical surface treatment of the stamp is needed to ensure a clean release after imprinting and to protect the expensive original master against contamination. Meanwhile, adhesion promoter between resin and substrate is also important in the nanoscale pattern. In this work, we have investigated the effect of surface treatment using silane coupling agent as release layer and adhesion promoter for UV-Nanoimprint lithography. Uniform SAM (self-assembled monolayer) could be fabricated by vapor deposition method. Vapor phase process eliminates the use of organic solvents and greatly simplifies the handling of the sample. It was also proven that 3-acryloxypropyl methyl dichlorosilane (APMDS) could strongly improve the adhesion force between resin and substrate compared with common planarization layer such as DUV-30J or oxygen plasma treatment.

Effect of Foreign Molecules on the SERS of Probe Molecules Trapped in Gaps between Planar Ag and Nano-sized Ag Particles

  • Kim, Kwan;Choi, Jeong-Yong;Shin, Kuan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.793-800
    • /
    • 2013
  • A few years ago, the plasmon-induced electronic coupling (PIEC) model was proposed in the literature to explain small changes in the surface-enhanced Raman scattering (SERS) in nanogap systems. If this model is correct, it will be very helpful in both basic and application fields. In light of this, we carefully reexamined its appropriateness. Poly(4-vinylpyridine) (P4VP) used in the earlier work was, however, never a proper layer, since most adsorbates not only adsorbed onto Ag nanoparticles sitting on P4VP but also penetrated into the P4VP layer deposited initially onto a flat Ag substrate, ultimately ending up in the SERS hot sites. Using 1,4-phenylenediisocyanide and 4-nitrophenol as the affixing layer and the foreign adsorbate, respectively, we could clearly reveal that the PIEC model is not suited for explaining the Raman signal in a nanogap system. Most of the Raman signal must have arisen from molecules situated at the gap center.

Effect of Isotropic Strain on Properties of Amorphous Magnetic films (아몰퍼스자성박막의 특성에 미치는 등방성 스트레인의 영향)

  • 신광호;김흥근;김영학;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.478-480
    • /
    • 2001
  • Fe-base amorphous films exhibit large saturation magnetostriction and soft magnetic Properties, which make them suitable for strain sensor applications. Most important material properties for the performance of these elements are the superior soft magnetic properties, such as high permeability and small coercive force, as well as magnetoelastic properties. It is well known that the strain generated in film deposition and/or post-heat treatment processes is one of important material properties, which effects on the soft magnetic properties of the film via magnetoelastic coupling. In this study, the effect of an isotropic strain in plane of magnetic films have been performed experimently. Amorphous films with the composition of (F $e_{90}$ $Co_{10}$)$_{78}$S $i_{l2}$ $B_{10}$ were employed in this study. The film with 5${\mu}{\textrm}{m}$ thick was deposed onto the polyimide substrate with 50${\mu}{\textrm}{m}$ thick by virtue of RF sputtering. The film was subject to post annealing with a static magnetic field with 500Oe magnetic field intensity at 35$0^{\circ}C$ for 1 hour. The polyimide substrate with the film was bonded with an adhesive on PZT piezoelectric substrate with 600${\mu}{\textrm}{m}$ thick in applying voltage of 500V. The change in MH loops of films due to the isotropic strain was measured by using VSM. The coercive force was evaluated from MH loops. It has shown in the results that M-H loops of films are subject to change considerably with a dc voltage, resulting of the magnetization rotation from normal to plane direction as the applied voltage is changed from 500V to 250V.50V.V.

  • PDF

ASG(Amorphous Silicon TFT Gate driver circuit) Technology for Mobile TFT-LCD Panel

  • Jeon, Jin;Lee, Won-Kyu;Song, Jun-Ho;Kim, Hyung-Guel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.395-398
    • /
    • 2004
  • We developed an a-Si TFT-LCD panel with integrated gate driver circuit using a standard 5-MASK process. To minimize the effect of the a-Si TFT current and LC's capacitance variation with temperature, we developed a new a-Si TFT circuit structure and minimized coupling capacitance by changing vertical architecture above gate driver circuit. Integration of gate driver circuit on glass substrate enables single chip and 3-side free panel structure in a-Si TFT-LCD of QVGA(240$^{\ast}$320) resolution. And using double ASG structure the dead space of TFT-LCD panel could be further decreased.

  • PDF

Magnetostatic Coupling Between two Nanowires of Different Width

  • Lee, Han-Seok;Kim, Seung-Ho;Chang, Young-Wook;Yoo, Kyung-Hwa;Lee, J.
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.15-17
    • /
    • 2009
  • The magnetostatic interaction between the two magnetic nanowires was studied by using the longitudinal magneto-optical Kerr effect (MOKE). For this purpose two magnetic nanowires having different widths (400 nm, 800 nm) were fabricated on an Si substrate with electron beam lithography and the lift-off method. Magnetic hysteresis loops measured by MOKE showed double switching behavior, corresponding to the separated switching fields of each wire. The switching field of the narrow wire was greatly affected by the separation between the two wires. Based on how the switching field changes with decreasing separation, it is concluded that the magnetostatic field of the 800-nm wire strongly affects the switching of the 400-nm wire when the separation is less than $0.5{\mu}m$.

ASG(Amorphous Silicon TFT Gate driver circuit)Technology for Mobile TFT-LCD Panel

  • Jeon, Jin;Lee, Won-Kyu;Song, Jun-Ho;Kim, Hyung-Guel
    • Journal of Information Display
    • /
    • v.5 no.2
    • /
    • pp.1-5
    • /
    • 2004
  • We developed an a-Si TFT-LCD panel with integrated gate driver circuit using a standard 5-MASK process. To minimize the effect of the a-Si TFT current and LC's capacitance variation with temperature, we developed a new a-Si TFT circuit structure and minimized coupling capacitance by changing vertical architecture above gate driver circuit. Integration of gate driver circuit on glass substrate enables single chip and 3-side free panel structure in a-Si TFT-LCD of QVGA ($240{\times}320$) resolution. And using double ASG structure the dead space of TFT-LCD panel could be further decreased.