• Title/Summary/Keyword: Substrate characteristics

Search Result 3,305, Processing Time 0.035 seconds

Wideband propagation characteristics analysis of a microstrip transmission line on FR-4 composite substrate (FR-4 composite 기판을 이용한 microstrip 전송선의 광대역 전송 특성 해석)

  • 홍정기;김영국;이해영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.69-77
    • /
    • 1996
  • We analyzed wideband propagation characteristics of a microstrip transmission line based on FR-4 composite substrate using the wideband complex dielectric constant model and the phenomenological loss equivalence method. The loss calculated by constant relative permittivity and loss tangent is greatly overestimatd compared to that calculated by the frequency-dependent complex relative permittivity. This wideband analysis can be helpful to characterize high-speed and high-density transmission lines associated with the wideband dielectric characteristics and shows that the FR-4 composite substrate has high potential of high frequency circuit applications in terms o fthe propagation loss.

  • PDF

Life Time Characteristics of OLED Device with AlOx Passivation Film Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 AlOx 봉지 박막을 갖는 OLED 소자의 수명 특성)

  • An, O-Jin;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.272-277
    • /
    • 2010
  • We investigated the life time characteristics of OLED device with aluminium oxide ($AlO_x$) passivation film on glass substrate and polyethylene terephthalate (PET) substrate by RF magnetron sputtering for the transparent barrier film applied to flexible OLED device. Basic buffer layer was determined as $Alq_3$(500 nm)-LiF(300 nm)-Al(1200 nm), and the most suitable aluminium oxide ($AlO_x$) film have been formed when the partial volume ratio of oxygen was 20% and the sputtering power was 100 watt and the minimum thickness of buffer was $2\;{\mu}m$. $AlO_x$/epoxy hybrid film was also used as a effective passivation layer for the purpose of improving life time characteristics of OLED devices with the glass substrate and the plastic substrate. Besides, the simultaneous deposition of $AlO_x$/epoxy film on back side of PET could result in better improvement of life time.

Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics (OLED용 ITO박막의 공정조건과 품질특성 추론에 근거한 품질관리)

  • Seo, Jeong-Min;Park, Keun-Young;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2008
  • Recently, research on a flat panel display(FPD) has focused on organic light-emitting display(OLED) which has wide angle of view, high contrast ratio and low power consumption. ITO(Indium-Tin-Oxide) films are the most widely used material as a transparent electrode of OLED and also in many other display devices like LCD or PDP. The performance and efficiency of OLED is related to the surface condition of ITO coated glass substrate. The typical surface defect of glass substrate is measured for electric characteristics and physical condition for transmittance and roughness. Since ITO coated glass substrate can be destroyed for inspection about surface roughness, sheet resistance, film thickness and transmittance, precise fabrication condition should be made based on the estimated relationship. In this paper, ITO films were prepared on the commercial glass substrate by the Ion-Plating method changing the partial pressure of gas(Ar, 02) and the chamber temperature between $200^{\circ}C$ and $300^{\circ}C$. The characteristics of films were examined by the 4-point probe, supersonic thickness measurement, transmittance measurement and AFM. We estimated the relationship between processing parameters(Ar gas, O2 gas, Temperature) and properties of ITO films (Sheet Resistance, Film Thickness, Transmittance, Surface Roughness).

Effect of Substrate Temperature on the Emission Characteristics of ZnO Films Grown by Pulsed Laser Deposition (기판 온도의 영향에 따른 펄스레이저 증착법으로 성장된 ZnO 박막의 발광 특성)

  • Kim, Y.H.;Kim, S.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.358-364
    • /
    • 2009
  • We investigated the growth of ZnO thin films with prominent emission characteristics through minimizing the formation of defects by using pulsed laser deposition (PLD). To do so, the ZnO films were deposited on sapphire(0001) substrates at the substrate temperature of $400-850^{\circ}C$ and then the variation of their structural and optical properties were analyzed by x-ray diffraction, atomic force microscope and photoluminescence. As a result, all ZnO films were grown with c-axis preferential orientation irrespective of the substrate temperature. However, the crystallinity and stress state were dependent on the substrate temperature and the ZnO film deposited at $600^{\circ}C$ showed the best surface morphology and crystallinity with nearly no strain. And also this film exhibited outstanding emission characteristics from the viewpoint of full width half maximum of UV emission peak as well as visible emission due to defects. These results indicate that the emission characteristics of the ZnO films are strongly related to their structural characteristics influenced by substrate temperature. Consequently, ZnO films with strong UV emission and nearly no visible emission, which are applicable to UV emission devices, could be grown at the substrate temperature of $600^{\circ}C$ by PLD.

The PL Characteristics of ZnO Thin Film on Flexible Polymer by Pulse Laser Deposition

  • Choi, Young-Jin;Lee, Cheon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.245-247
    • /
    • 2012
  • In this study, ZnO films have been grown on PES (polyethersulfone) of flexible polymer substrate by PLD (pulsed laser deposition) and characterized for crystalline and optical properties. Growing conditions were changed with substrate temperatures ranging from 50 to $200^{\circ}C$ and laser power density ranging from 0.2 to $0.4J/cm^2$. When ZnO thin films are deposited at low temperature with a small laser power density, the (002) peaks of XRD to signify the crystal quality of ZnO thin films appear to be very weak and the (101) peaks to signify the chemical composition of oxygen and zinc are strong. The (002) peaks increase with the substrate temperature and laser power density because the energy needed for the supply of the combination regarding zinc and oxygen has increased. In this study, the best condition for growing ZnO thin film on PES is at a substrate temperature of $200^{\circ}C$ and with a laser density of $0.3J/cm^2$. The characteristics of PL were measured by UV and green luminescence.

Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible displays

  • Choi, Kwang-Hyuk;Cho, Sung-Woo;Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.605-608
    • /
    • 2008
  • The preparation and characteristics of flexible indium tin oxide electrodes grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible optoelectronics In spite of low a PET substrate temperature, we can obtain the flexible electrode with a sheet resistance of 47.4 ohm/square and an average optical transmittance of 83.46 % in the green region of 500~550 nm wavelength. Both x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis results showed that all flexible ITO electrodes grown on the PET substrate were an amorphous structure with a very smooth and featureless surface, regardless of the Ar/$O_2$ flow ratio due to the low substrate temperature, which is maintained by a cooling drum. In addition, the flexible ITO electrode grown on the Ar ion beam treated PET substrates showed more stable mechanical properties than the flexible ITO electrode grown on the wet cleaned PET substrate, due to an increased adhesion between the flexible ITO and the PET substrates.

  • PDF

Etching properties of sapphire substrate using $CH_4$/Ar inductively coupled plasma ($CH_4$/Ar 유도 결합 플라즈마를 이용한 Sapphire 기판의 식각 특성)

  • Um, Doo-Seung;Kim, Gwan-Ha;Kim, Dong-Pyo;Yang, Xue;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.102-102
    • /
    • 2008
  • Sapphire (${\alpha}-Al_2O_3$) has been used as the substrate of opto-electronic device because of characteristics of thermal stability, comparatively low cost, large diameter, optical transparency and chemical compatibility. However, there is difficulty in the etching and patterning due to the physical stability of sapphire and the selectivity with sapphire and mask materials [1,2]. Therefore, sapphire has been studied on the various fields and need to be studied, continuously. In this study, the etching properties of sapphire substrate were investigated with various $CH_4$/Ar gas combination, radio frequency (RF) power, DC-bias voltage and process pressure. The characteristics of the plasma were estimated for mechanism using optical emission spectroscopy (OES). The chemical compounds on the surface of sapphire substrate were investigated using energy dispersive X-ray (EDX). The chemical reaction on the surface of the etched sapphire substrate was observed by X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was used to investigate the vertical and slope profiles.

  • PDF

Development of Measurement System for Contact Angle and Evaporation Characteristics of a Micro-droplet on a Substrate (미소 액적의 접촉각 및 건조 특성 측정 시스템 개발)

  • Kwon, Kye-Si;An, Seung-Hyun;Jang, Min Hyuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.414-420
    • /
    • 2013
  • We developed inkjet based measurement system for micro-droplet behavior on a substrate. By using the inkjet dispenser, a droplet, which is as small as few pico-liter in volume, can be jetted and the amount can be controlled. After jetting, the droplet image on the substrate is acquired from side view camera. Then, droplet profile is extracted to measure droplet volume, contact angle and evaporation characteristics. Also top view image of the droplet is acquired for better understanding of droplet shape. The previous contact angle measurement method has limitations since it mainly measures the ratio of height and contact diameter of droplet on a substrate. Unlike previous measurement system, our proposed method has advantages because various behavior of droplet on substrate can be effectively analyzed by extracting the droplet profile.

Growth Characteristics of Thick $\textrm{SiO}_2$ Using $\textrm{O}_3$/TEOS APCVD ($\textrm{O}_3$/TEOS를 이용한 후막 $\textrm{SiO}_2$의 성장특성 연구)

  • Lee, U-Hyeong;Choe, Jin-Gyeong;Kim, Hyeon-Su;Yu, Ji-Beom
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.144-148
    • /
    • 1999
  • We have studied the deposition characteristics of thick silicon dioxide film on Si substrate by $O_3$/TEOS APCVD(Atmospheric Pressure Chemical Vapor Deposition). The effect of deposition parameters such as the distance between showerhead and substrate, deposition temperature, TEOS flow rate and $O_3$/TEOS ratio on deposition rate, surface morphology, and properties of films as investigated. As deposition temperature increased, deposition rate decreased but the surface morphology and adhesion of film to substrate improved. As the distance between showerhead and substrate decreased, the deposition rate increased. Etching rate using the BOE increased as TEOS flow rate increased, but was independent of$ O_3$/TEOS ratio. Deposition rate of $5\mu\textrm{m}$/hour was obtained under the condition that the distance between showerhead and substrate was 5mm and the deposition temperature was $370^{\circ}C$.

  • PDF

A Study on the Characteristics of the MgO Thin Film Deposited by the Hollow Cathode Discharge Ion Plating Method (HCD 이온 플레이팅법에 의해 증착된 MgO박막의 특성에 관한 연구)

  • Chung, Woo-Joon;Jeong, Heui-Seob;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.200-202
    • /
    • 1996
  • MgO film was deposited on the glass substrate by the hollow cathode discharge ion plating method and the characteristics of the MgO thin film such as deposition rate, crystalline orientation, surface morphology and secondary electron coefficient were investigated. The deposition rate of MgO thin films were $430^{\sim}1270{\AA}$/min at various temperatures and biases. The crystalline orientation of the MgO thin film changed from (200) to (220) upon increasing the HCD current from 100A to 200A. These results indicated that the crystallin orientation of the MgO thin film was determined by the super-saturation ratio. The (200) peak decreased and the (220) peak increased as the substrate bias increased, while both peaks increased as the substrate temperature increased. The grain size increased as the substrate bias increased and the secondary electron emission coefficient increased as the substrate bias increased.

  • PDF