Browse > Article
http://dx.doi.org/10.5757/JKVS.2009.18.5.358

Effect of Substrate Temperature on the Emission Characteristics of ZnO Films Grown by Pulsed Laser Deposition  

Kim, Y.H. (Nano-Devices Research Center, Korea Institute of Science and Technology)
Kim, S.I. (Nano-Devices Research Center, Korea Institute of Science and Technology)
Publication Information
Journal of the Korean Vacuum Society / v.18, no.5, 2009 , pp. 358-364 More about this Journal
Abstract
We investigated the growth of ZnO thin films with prominent emission characteristics through minimizing the formation of defects by using pulsed laser deposition (PLD). To do so, the ZnO films were deposited on sapphire(0001) substrates at the substrate temperature of $400-850^{\circ}C$ and then the variation of their structural and optical properties were analyzed by x-ray diffraction, atomic force microscope and photoluminescence. As a result, all ZnO films were grown with c-axis preferential orientation irrespective of the substrate temperature. However, the crystallinity and stress state were dependent on the substrate temperature and the ZnO film deposited at $600^{\circ}C$ showed the best surface morphology and crystallinity with nearly no strain. And also this film exhibited outstanding emission characteristics from the viewpoint of full width half maximum of UV emission peak as well as visible emission due to defects. These results indicate that the emission characteristics of the ZnO films are strongly related to their structural characteristics influenced by substrate temperature. Consequently, ZnO films with strong UV emission and nearly no visible emission, which are applicable to UV emission devices, could be grown at the substrate temperature of $600^{\circ}C$ by PLD.
Keywords
ZnO thin film; Pulsed laser deposition; Substrate temperature; C-axis texturing; Photoluminescence;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. C. Look, Mater. Sci. Eng. B 80, 383 (2001)   DOI   ScienceOn
2 J. Y. Oh, J. H. Lim, D. K. Hwang, H. S. Kim, R. Navamathavan, K. K. Kim, and S. J. Park, J. Electrochem. Soc. 151, G623 (2004)   DOI   ScienceOn
3 X. W. Sun and H. S. Kwok, J. Appl. Phys. 86, 408 (1999)   DOI   ScienceOn
4 J. S. Park, S. K. Hong, I. H. Im, J. S. Ha, H. J. Lee, S. H. Park, J. H. Chang, M. W. Cho, and T. Yao, J. Cryst. Growth 311, 2163 (2009)   DOI   ScienceOn
5 JCPDS Card #34-1451
6 B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001)   DOI   ScienceOn
7 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson,R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, Adv. Funct. Mater. 12, 323 (2002)   DOI   ScienceOn
8 F. K. Shan, B. C. Shin, S. C. Kim, and Y.S. Yu, J. Eur. Ceram. Soc. 24, 1861 (2004)   DOI   ScienceOn
9 Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, and C. Wang, Nanotechnol. 14, 11 (2003)   DOI   ScienceOn
10 김희수, 한국진공학회지 16, 205 (2007)   과학기술학회마을   DOI
11 C. M. Wang, L. V. Saraf, T. L. Hubler, and P.Nachimuthu, J. Mater. Res. 23, 13 (2008)   DOI   ScienceOn
12 손영국, 황동현, 조신호, 한국진공학회지 16, 267 (2007)   과학기술학회마을   DOI   ScienceOn
13 C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lua, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999)   DOI   ScienceOn
14 I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog Photovolt: Res. Appl. 16, 235 (2008)   DOI   ScienceOn
15 S. Zhou, M. F. Wu, S. D. Yao, Y. M. Lu, and Y. C. Liu, Mater. Res. Bull. 41, 2198 (2006)   DOI   ScienceOn
16 X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J.Chen, H. Wang, B. Wang, and H. Yan, Mater. Lett. 57, 4655 (2003)   DOI   ScienceOn